Paricle identification at VAMOS++ with machine learning techniques
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Y. Cho | - |
dc.contributor.author | Yung Hee Kim | - |
dc.contributor.author | Choi, S. | - |
dc.contributor.author | Joochun Park | - |
dc.contributor.author | Sunghan Bae | - |
dc.contributor.author | Kevin Insik Hahn | - |
dc.contributor.author | Y. Son | - |
dc.contributor.author | Navin, A. | - |
dc.contributor.author | Lemasson, A. | - |
dc.contributor.author | Rejmund, M. | - |
dc.contributor.author | Ramos, D. | - |
dc.contributor.author | Ackermann, D. | - |
dc.contributor.author | Utepov, A. | - |
dc.contributor.author | Fourgeres, C. | - |
dc.contributor.author | Thomas, J.C. | - |
dc.contributor.author | Goupil, J. | - |
dc.contributor.author | Fremont, G. | - |
dc.contributor.author | de, France G. | - |
dc.contributor.author | Watanabe, Y.X. | - |
dc.contributor.author | Hirayama, Y. | - |
dc.contributor.author | Jeong, S. | - |
dc.contributor.author | Niwase, T. | - |
dc.contributor.author | Miyatake, H. | - |
dc.contributor.author | Schury, P. | - |
dc.contributor.author | Rosenbusch, M. | - |
dc.contributor.author | Chae, K. | - |
dc.contributor.author | Kim, C. | - |
dc.contributor.author | Kim, S. | - |
dc.contributor.author | Gu, G.M. | - |
dc.contributor.author | Kim, M.J. | - |
dc.contributor.author | John, P. | - |
dc.contributor.author | Andreev, A. | - |
dc.contributor.author | Korten, W. | - |
dc.contributor.author | Recchia, F. | - |
dc.contributor.author | Angelis, G. de | - |
dc.contributor.author | Vidal, R. Perez | - |
dc.contributor.author | Rezynkina, K. | - |
dc.contributor.author | Ha, J. | - |
dc.contributor.author | Didierjean, F. | - |
dc.contributor.author | Marini, P. | - |
dc.contributor.author | Treasa, D. | - |
dc.contributor.author | Tsekhanovich, I. | - |
dc.contributor.author | Dudouet, J. | - |
dc.contributor.author | Bhattacharyya, S. | - |
dc.contributor.author | Mukherjee, G. | - |
dc.contributor.author | Banik, R. | - |
dc.contributor.author | Bhattacharya, S. | - |
dc.contributor.author | Mukai, M. | - |
dc.date.accessioned | 2024-01-22T22:04:34Z | - |
dc.date.available | 2024-01-22T22:04:34Z | - |
dc.date.created | 2023-06-09 | - |
dc.date.issued | 2023-08 | - |
dc.identifier.issn | 0168-583X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14712 | - |
dc.description.abstract | Multi-nucleon transfer reaction between 136Xe beam and 198Pt target was performed using the VAMOS++ spectrometer at GANIL to study the structure of n-rich nuclei around N=126. Unambiguous charge state identification was obtained by combining two supervised machine learning methods, deep neural network (DNN) and positional correction using a gradient-boosting decision tree (GBDT). The new method reduced the complexity of the kinetic energy calibration and outperformed the conventional method improving the charge state resolution by 8%. © 2023 | - |
dc.language | 영어 | - |
dc.publisher | Elsevier B.V. | - |
dc.title | Paricle identification at VAMOS++ with machine learning techniques | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001019155900001 | - |
dc.identifier.scopusid | 2-s2.0-85160016748 | - |
dc.identifier.rimsid | 80901 | - |
dc.contributor.affiliatedAuthor | Y. Cho | - |
dc.contributor.affiliatedAuthor | Yung Hee Kim | - |
dc.contributor.affiliatedAuthor | Joochun Park | - |
dc.contributor.affiliatedAuthor | Sunghan Bae | - |
dc.contributor.affiliatedAuthor | Kevin Insik Hahn | - |
dc.contributor.affiliatedAuthor | Y. Son | - |
dc.identifier.doi | 10.1016/j.nimb.2023.05.053 | - |
dc.identifier.bibliographicCitation | Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, v.541, pp.240 - 242 | - |
dc.relation.isPartOf | Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms | - |
dc.citation.title | Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms | - |
dc.citation.volume | 541 | - |
dc.citation.startPage | 240 | - |
dc.citation.endPage | 242 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Instruments & Instrumentation | - |
dc.relation.journalResearchArea | Nuclear Science & Technology | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Instruments & Instrumentation | - |
dc.relation.journalWebOfScienceCategory | Nuclear Science & Technology | - |
dc.relation.journalWebOfScienceCategory | Physics, Atomic, Molecular & Chemical | - |
dc.relation.journalWebOfScienceCategory | Physics, Nuclear | - |
dc.subject.keywordAuthor | Machine learning | - |
dc.subject.keywordAuthor | Multi-nucleon transfer reaction | - |
dc.subject.keywordAuthor | VAMOS++ | - |