BROWSE

Related Scientist

희귀핵연구단's photo.

희귀핵연구단
희귀핵연구단
more info

ITEM VIEW & DOWNLOAD

Paricle identification at VAMOS++ with machine learning techniques

DC Field Value Language
dc.contributor.authorY. Cho-
dc.contributor.authorYung Hee Kim-
dc.contributor.authorChoi, S.-
dc.contributor.authorJoochun Park-
dc.contributor.authorSunghan Bae-
dc.contributor.authorKevin Insik Hahn-
dc.contributor.authorY. Son-
dc.contributor.authorNavin, A.-
dc.contributor.authorLemasson, A.-
dc.contributor.authorRejmund, M.-
dc.contributor.authorRamos, D.-
dc.contributor.authorAckermann, D.-
dc.contributor.authorUtepov, A.-
dc.contributor.authorFourgeres, C.-
dc.contributor.authorThomas, J.C.-
dc.contributor.authorGoupil, J.-
dc.contributor.authorFremont, G.-
dc.contributor.authorde, France G.-
dc.contributor.authorWatanabe, Y.X.-
dc.contributor.authorHirayama, Y.-
dc.contributor.authorJeong, S.-
dc.contributor.authorNiwase, T.-
dc.contributor.authorMiyatake, H.-
dc.contributor.authorSchury, P.-
dc.contributor.authorRosenbusch, M.-
dc.contributor.authorChae, K.-
dc.contributor.authorKim, C.-
dc.contributor.authorKim, S.-
dc.contributor.authorGu, G.M.-
dc.contributor.authorKim, M.J.-
dc.contributor.authorJohn, P.-
dc.contributor.authorAndreev, A.-
dc.contributor.authorKorten, W.-
dc.contributor.authorRecchia, F.-
dc.contributor.authorAngelis, G. de-
dc.contributor.authorVidal, R. Perez-
dc.contributor.authorRezynkina, K.-
dc.contributor.authorHa, J.-
dc.contributor.authorDidierjean, F.-
dc.contributor.authorMarini, P.-
dc.contributor.authorTreasa, D.-
dc.contributor.authorTsekhanovich, I.-
dc.contributor.authorDudouet, J.-
dc.contributor.authorBhattacharyya, S.-
dc.contributor.authorMukherjee, G.-
dc.contributor.authorBanik, R.-
dc.contributor.authorBhattacharya, S.-
dc.contributor.authorMukai, M.-
dc.date.accessioned2024-01-22T22:04:34Z-
dc.date.available2024-01-22T22:04:34Z-
dc.date.created2023-06-09-
dc.date.issued2023-08-
dc.identifier.issn0168-583X-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/14712-
dc.description.abstractMulti-nucleon transfer reaction between 136Xe beam and 198Pt target was performed using the VAMOS++ spectrometer at GANIL to study the structure of n-rich nuclei around N=126. Unambiguous charge state identification was obtained by combining two supervised machine learning methods, deep neural network (DNN) and positional correction using a gradient-boosting decision tree (GBDT). The new method reduced the complexity of the kinetic energy calibration and outperformed the conventional method improving the charge state resolution by 8%. © 2023-
dc.language영어-
dc.publisherElsevier B.V.-
dc.titleParicle identification at VAMOS++ with machine learning techniques-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001019155900001-
dc.identifier.scopusid2-s2.0-85160016748-
dc.identifier.rimsid80901-
dc.contributor.affiliatedAuthorY. Cho-
dc.contributor.affiliatedAuthorYung Hee Kim-
dc.contributor.affiliatedAuthorJoochun Park-
dc.contributor.affiliatedAuthorSunghan Bae-
dc.contributor.affiliatedAuthorKevin Insik Hahn-
dc.contributor.affiliatedAuthorY. Son-
dc.identifier.doi10.1016/j.nimb.2023.05.053-
dc.identifier.bibliographicCitationNuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, v.541, pp.240 - 242-
dc.relation.isPartOfNuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms-
dc.citation.titleNuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms-
dc.citation.volume541-
dc.citation.startPage240-
dc.citation.endPage242-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.relation.journalResearchAreaNuclear Science & Technology-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalWebOfScienceCategoryNuclear Science & Technology-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.relation.journalWebOfScienceCategoryPhysics, Nuclear-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorMulti-nucleon transfer reaction-
dc.subject.keywordAuthorVAMOS++-
Appears in Collections:
Center for Exotic Nuclear Studies(희귀 핵 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse