BROWSE

Related Scientist

cces's photo.

cces
강상관계물질연구단
more info

ITEM VIEW & DOWNLOAD

Vortex detection in atomic Bose-Einstein condensates using neural networks trained on synthetic images

DC Field Value Language
dc.contributor.authorMyeonghyeon Kim-
dc.contributor.authorKwon, Junhwan-
dc.contributor.authorTenzin Rabga-
dc.contributor.authorY. Shin-
dc.date.accessioned2024-01-10T22:00:27Z-
dc.date.available2024-01-10T22:00:27Z-
dc.date.created2023-11-28-
dc.date.issued2023-12-
dc.identifier.issn2632-2153-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/14549-
dc.description.abstractQuantum vortices in atomic Bose-Einstein condensates (BECs) are topological defects characterized by quantized circulation of particles around them. In experimental studies, vortices are commonly detected by time-of-flight imaging, where their density-depleted cores are enlarged. In this work, we describe a machine learning-based method for detecting vortices in experimental BEC images, particularly focusing on turbulent condensates containing irregularly distributed vortices. Our approach employs a convolutional neural network (CNN) trained solely on synthetic simulated images, eliminating the need for manual labeling of the vortex positions as ground truth. We find that the CNN achieves accurate vortex detection in real experimental images, thereby facilitating analysis of large experimental datasets without being constrained by specific experimental conditions. This novel approach represents a significant advancement in studying quantum vortex dynamics and streamlines the analysis process in the investigation of turbulent BECs. © 2023 The Author(s). Published by IOP Publishing Ltd-
dc.language영어-
dc.publisherInstitute of Physics-
dc.titleVortex detection in atomic Bose-Einstein condensates using neural networks trained on synthetic images-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001119378500001-
dc.identifier.scopusid2-s2.0-85176469055-
dc.identifier.rimsid82158-
dc.contributor.affiliatedAuthorMyeonghyeon Kim-
dc.contributor.affiliatedAuthorTenzin Rabga-
dc.contributor.affiliatedAuthorY. Shin-
dc.identifier.doi10.1088/2632-2153/ad03ad-
dc.identifier.bibliographicCitationMachine Learning: Science and Technology, v.4, no.4-
dc.relation.isPartOfMachine Learning: Science and Technology-
dc.citation.titleMachine Learning: Science and Technology-
dc.citation.volume4-
dc.citation.number4-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordAuthorBose-Einstein condensates-
dc.subject.keywordAuthorconvolutional neural network-
dc.subject.keywordAuthorquantum vortices-
dc.subject.keywordAuthorsynthetic data-
Appears in Collections:
Center for Correlated Electron Systems(강상관계 물질 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse