Ab Initio Study of Thin Oxide-Metal Over layers as an Inverse Catalytic System for Dioxygen Reduction and Enhanced CO Tolerance
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shin, D | - |
dc.contributor.author | Sinthika, S | - |
dc.contributor.author | Choi, M | - |
dc.contributor.author | Thapa, R | - |
dc.contributor.author | Noejung Park | - |
dc.date.available | 2015-04-21T08:57:12Z | - |
dc.date.created | 2015-01-20 | - |
dc.date.issued | 2014-11 | - |
dc.identifier.issn | 2155-5435 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/1448 | - |
dc.description.abstract | Using first-principles density functional theory calculations, we used a thin oxide overlayer, such as MgO, on a metal surface as an inverse catalyst for dioxygen reduction. Surface distortions in the oxide layer, combined with the tunneling of electron from the underneath metal, activated the adsorbed O2 in the form of a superoxo or peroxo. On the other hand, the thin MgO overlayer readily prevents the π-back-bonding between CO and the metal surface, thereby efficiently mitigating the affinity of the metal surface for CO. The operating potential and overpotential for the oxygen reduction reaction (ORR) process have been estimated for various combinations of thin insulators and metals. The strongest binding intermediate in the overall reaction pathway influenced the overpotential. We show that for a Ag(100)-supported MgO surface, the ORR commences with a low overpotential, which is comparable to that of the Pt(111) surface. This suggests that an optimally chosen insulator−metal overlayer structure can yield a sharply tuned free energy profile for ORR. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | ab initio calculation, electrocatalyst, inverse catalyst, overpotential, electron tunneling | - |
dc.title | Ab Initio Study of Thin Oxide-Metal Over layers as an Inverse Catalytic System for Dioxygen Reduction and Enhanced CO Tolerance | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000344639300034 | - |
dc.identifier.scopusid | 2-s2.0-84909982532 | - |
dc.identifier.rimsid | 16816 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Noejung Park | - |
dc.identifier.doi | 10.1021/cs501153p | - |
dc.identifier.bibliographicCitation | ACS CATALYSIS, v.4, no.11, pp.4074 - 4080 | - |
dc.citation.title | ACS CATALYSIS | - |
dc.citation.volume | 4 | - |
dc.citation.number | 11 | - |
dc.citation.startPage | 4074 | - |
dc.citation.endPage | 4080 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 16 | - |
dc.description.scptc | 19 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | OXYGEN REDUCTION | - |
dc.subject.keywordPlus | FUEL-CELLS | - |
dc.subject.keywordPlus | MANGANESE OXIDE | - |
dc.subject.keywordPlus | OXIDATION | - |
dc.subject.keywordPlus | SURFACES | - |
dc.subject.keywordPlus | COMPLEXES | - |
dc.subject.keywordPlus | PLATINUM | - |
dc.subject.keywordPlus | MGO | - |
dc.subject.keywordPlus | ELECTROCATALYSTS | - |
dc.subject.keywordPlus | NANOPARTICLES | - |
dc.subject.keywordAuthor | ab initio calculation | - |
dc.subject.keywordAuthor | electrocatalyst | - |
dc.subject.keywordAuthor | inverse catalyst | - |
dc.subject.keywordAuthor | overpotential | - |
dc.subject.keywordAuthor | electron tunneling | - |