On Gromov–Yomdin type theorems and a categorical interpretation of holomorphicity
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Barbacovi, Federico | - |
dc.contributor.author | Jongmyeong Kim | - |
dc.date.accessioned | 2024-01-05T22:01:08Z | - |
dc.date.available | 2024-01-05T22:01:08Z | - |
dc.date.created | 2023-08-28 | - |
dc.date.issued | 2023-09 | - |
dc.identifier.issn | 1022-1824 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14488 | - |
dc.description.abstract | In topological dynamics, the Gromov–Yomdin theorem states that the topological entropy of a holomorphic automorphism f of a smooth projective variety is equal to the logarithm of the spectral radius of the induced map f∗ . In order to establish a categorical analogue of the Gromov–Yomdin theorem, one first needs to find a categorical analogue of a holomorphic automorphism. In this paper, we propose a categorical analogue of a holomorphic automorphism and prove that the Gromov–Yomdin type theorem holds for them. © 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG. | - |
dc.language | 영어 | - |
dc.publisher | Birkhauser | - |
dc.title | On Gromov–Yomdin type theorems and a categorical interpretation of holomorphicity | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001052947000001 | - |
dc.identifier.scopusid | 2-s2.0-85168475393 | - |
dc.identifier.rimsid | 81537 | - |
dc.contributor.affiliatedAuthor | Jongmyeong Kim | - |
dc.identifier.doi | 10.1007/s00029-023-00870-x | - |
dc.identifier.bibliographicCitation | Selecta Mathematica, New Series, v.29, no.4 | - |
dc.relation.isPartOf | Selecta Mathematica, New Series | - |
dc.citation.title | Selecta Mathematica, New Series | - |
dc.citation.volume | 29 | - |
dc.citation.number | 4 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | STABILITY CONDITIONS | - |
dc.subject.keywordPlus | ENTROPY | - |
dc.subject.keywordPlus | AUTOEQUIVALENCES | - |
dc.subject.keywordPlus | SPACES | - |
dc.subject.keywordAuthor | 14F08 | - |
dc.subject.keywordAuthor | 18G80 | - |
dc.subject.keywordAuthor | 37B40 | - |
dc.subject.keywordAuthor | 53D37 | - |