Pseudoholomorphic curves on the LCS-fication of contact manifolds
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yong-Geun Oh | - |
dc.contributor.author | Savelyev, Yasha | - |
dc.date.accessioned | 2024-01-04T22:02:32Z | - |
dc.date.available | 2024-01-04T22:02:32Z | - |
dc.date.created | 2023-06-27 | - |
dc.date.issued | 2023-05 | - |
dc.identifier.issn | 1615-715X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14474 | - |
dc.description.abstract | For each contact diffeomorphism φ: (Q, ζ) → (Q, ζ) of (Q, ζ), we equip its mapping torus Mφ with a locally conformal symplectic form of Banyaga's type, which we call the lcs mapping torus of the contact diffeomorphism φ. In the present paper, we consider the product Q × S1 = Mid (corresponding to φ = id) and develop basic analysis of the associated J-holomorphic curve equation, which has the form {equation presented} for the map u = (w, f): ς˙→Q×S1 for a λ-compatible almost complex structure J and a punctured Riemann surface (ς˙,j). In particular, w is a contact instanton in the sense of [31], [32].We develop a scheme of treating the non-vanishing charge by introducing the notion of charge class in H1(ς˙,Z) and develop the geometric framework for the study of pseudoholomorphic curves, a correct choice of energy and the definition of moduli spaces towards the construction of a compactification of the moduli space on the lcs-fication of (Q, λ) (more generally on arbitrary locally conformal symplectic manifolds). | - |
dc.language | 영어 | - |
dc.publisher | De Gruyter Open Ltd | - |
dc.title | Pseudoholomorphic curves on the LCS-fication of contact manifolds | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001000471700001 | - |
dc.identifier.scopusid | 2-s2.0-85161353954 | - |
dc.identifier.rimsid | 81077 | - |
dc.contributor.affiliatedAuthor | Yong-Geun Oh | - |
dc.identifier.doi | 10.1515/advgeom-2023-0004 | - |
dc.identifier.bibliographicCitation | Advances in Geometry, v.23, no.2, pp.153 - 190 | - |
dc.relation.isPartOf | Advances in Geometry | - |
dc.citation.title | Advances in Geometry | - |
dc.citation.volume | 23 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 153 | - |
dc.citation.endPage | 190 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | WEINSTEIN CONJECTURE | - |
dc.subject.keywordPlus | GEOMETRY | - |
dc.subject.keywordPlus | INDEX | - |
dc.subject.keywordAuthor | lcs instanton | - |
dc.subject.keywordAuthor | lcs-fication of contact manifold | - |
dc.subject.keywordAuthor | Locally conformal symplectic manifold | - |