Reduced Defect Density in MOCVD-Grown MoS2 by Manipulating the Precursor Phase
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Larionette P. L. Mawlong | - |
dc.contributor.author | Anh Tuan Hoang | - |
dc.contributor.author | Jyothi Chintalapalli | - |
dc.contributor.author | Seunghyeon Ji | - |
dc.contributor.author | Kihyun Lee | - |
dc.contributor.author | Kwanpyo Kim | - |
dc.contributor.author | Jong-Hyun Ahn | - |
dc.date.accessioned | 2023-11-10T22:00:18Z | - |
dc.date.available | 2023-11-10T22:00:18Z | - |
dc.date.created | 2023-10-23 | - |
dc.date.issued | 2023-09 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14114 | - |
dc.description.abstract | Advancements in the synthesis of large-area, high-quality two-dimensional transition metal dichalcogenides such as MoS2 play a crucial role in the development of future electronic and optoelectronic devices. The presence of defects formed by sulfur vacancies in MoS2 results in low photoluminescence emission and imparts high n-type doping behavior, thus substantially affecting material quality. Herein, we report a new method in which single-phase (liquid) precursors are used for the metal-organic chemical vapor deposition (MOCVD) growth of a MoS2 film. Furthermore, we fabricated a high-performance photodetector (PD) and achieved improved photoresponsivity and faster photoresponse in the spectral range 405-637 nm compared to those of PDs fabricated by the conventional MOCVD method. In addition, the fabricated MoS(2)thin film showed a threshold voltage shift in the positive gate bias direction owing to the reduced number of S vacancy defects in the MoS2 lattice. Thus, our method significantly improved the synthesis of monolayer MoS2 and can expand the application scope of high-quality, atomically thin materials in large-scale electronic and optoelectronic devices. | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | Reduced Defect Density in MOCVD-Grown MoS2 by Manipulating the Precursor Phase | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001074684100001 | - |
dc.identifier.scopusid | 2-s2.0-85174751051 | - |
dc.identifier.rimsid | 81991 | - |
dc.contributor.affiliatedAuthor | Kihyun Lee | - |
dc.contributor.affiliatedAuthor | Kwanpyo Kim | - |
dc.identifier.doi | 10.1021/acsami.3c09027 | - |
dc.identifier.bibliographicCitation | ACS APPLIED MATERIALS & INTERFACES, v.15, no.40, pp.47359 - 47367 | - |
dc.relation.isPartOf | ACS APPLIED MATERIALS & INTERFACES | - |
dc.citation.title | ACS APPLIED MATERIALS & INTERFACES | - |
dc.citation.volume | 15 | - |
dc.citation.number | 40 | - |
dc.citation.startPage | 47359 | - |
dc.citation.endPage | 47367 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | MONOLAYER MOS2 | - |
dc.subject.keywordPlus | PHOTOLUMINESCENCE | - |
dc.subject.keywordPlus | RAMAN | - |
dc.subject.keywordPlus | HETEROSTRUCTURES | - |
dc.subject.keywordAuthor | transition metal dichalcogenides(TMDCs) | - |
dc.subject.keywordAuthor | monolayerMoS(2) | - |
dc.subject.keywordAuthor | metal-organic chemical vapor deposition(MOCVD) | - |
dc.subject.keywordAuthor | photoluminescence (PL) | - |
dc.subject.keywordAuthor | defects | - |