BROWSE

Related Scientist

park,jaewhan's photo.

park,jaewhan
원자제어저차원전자계연구단
more info

ITEM VIEW & DOWNLOAD

Alternative Structure Model of Correlated Charge Density Wave in Monolayer 1T-Nb(Ta)Se-2

Cited 0 time in webofscience Cited 0 time in scopus
97 Viewed 0 Downloaded
Title
Alternative Structure Model of Correlated Charge Density Wave in Monolayer 1T-Nb(Ta)Se-2
Author(s)
Jae Whan Park; Han Woong Yeom
Publication Date
2023-08
Journal
ACS NANO, v.17, no.17, pp.17041 - 17047
Publisher
AMER CHEMICAL SOC
Abstract
The putative Mott charge density wave (CDW) phases of monolayer 1T-NbSe2 and 1T-TaSe2 have attracted a lot of recent interest due to the unexpected orbital texture of their Mott-Hubbard states and the superstructure related to an exotic possibility of a quantum spin liquid with a spinon Fermi surface. The origins of the orbital texture and the superstructure have been, however, elusive. We find by using density functional theory calculations that these CDW phases can have an alternative metastable structure, an anion (Se) centered cluster, in contrast to the prevailing model of a cation (Nb or Ta) centered David star cluster. This structure can be stabilized by the charge transfer from the bilayer graphene/SiC substrate used commonly in the experiments. The anion-centered structure has a similar electronic band structure of a charge transfer insulator to that of DS clusters but naturally explains the orbital texture of the upper Hubbard band from simply its atomic structure. Moreover, this band structure exhibits a Fermi surface nesting to possibly break the symmetry spontaneously into a 3 x 3 -R30 & DEG; superstructure observed experimentally. The resulting ground state of the superstructure is shown to be a trivial band insulator, in contrast to exotic proposals. This result emphasizes the huge structural flexibility of these heteroexpitaxial monolayers, for which careful studies on atomic structures and interactions with substrates are highly requested.
URI
https://pr.ibs.re.kr/handle/8788114/14078
DOI
10.1021/acsnano.3c04398
ISSN
1936-0851
Appears in Collections:
Center for Artificial Low Dimensional Electronic Systems(원자제어 저차원 전자계 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse