BROWSE

Related Scientist

gel's photo.

gel
유전체교정연구단
more info

ITEM VIEW & DOWNLOAD

BLZ8 activates a plastidial peroxiredoxin and a ferredoxin to protect Chlamydomonas reinhardtii against oxidative stress

Cited 0 time in webofscience Cited 0 time in scopus
157 Viewed 0 Downloaded
Title
BLZ8 activates a plastidial peroxiredoxin and a ferredoxin to protect Chlamydomonas reinhardtii against oxidative stress
Author(s)
Choi, B.Y.; Park, H.; Kim, J.; Wang, S.; Lee, J.; Lee, Y.; D. Shim
Publication Date
2023-10
Journal
Plant Biology, v.25, no.6, pp.915 - 923
Publisher
John Wiley and Sons Inc
Abstract
Reactive oxygen species (ROS) cause damage to various cellular processes in almost all organisms, in particular photosynthetic organisms that depend on the electron transfer chain for CO2 fixation. However, the detoxifying process to mitigate ROS damage has not been studied intensively in microalgae. Here, we characterized the ROS detoxifying role of a bZIP transcription factor, BLZ8, in Chlamydomonas reinhardtii. To identify downstream targets of BLZ8, we carried out comparative genome-wide transcriptomic profiling of BLZ8 OX and its parental CC-4533 under oxidative stress conditions. Luciferase reporter activity assays and RT-qPCR were performed to test whether BLZ8 regulates downstream genes. We performed an in silico functional gene network analysis and an in vivo immunoprecipitation assay to identify the interaction between downstream targets of BLZ8. Comparative transcriptomic analysis and RT-qPCR revealed that overexpression of BLZ8 increased the expression levels of plastid peroxiredoxin1 (PRX1) and ferredoxin-5 (FDX5) under oxidative stress conditions. BLZ8 alone could activate the transcriptional activity of FDX5 and required bZIP2 to activate transcriptional activity of PRX1. Functional gene network analysis using FDX5 and PRX1 orthologs in A. thaliana suggested that these two genes were functionally associated. Indeed, our immunoprecipitation assay revealed the physical interaction between PRX1 and FDX5. Furthermore, the complemented strain, fdx5 (FDX5), recovered growth retardation of the fdx5 mutant under oxidative stress conditions, indicating that FDX5 contributes to oxidative stress tolerance. These results suggest that BLZ8 activates PRX1 and FDX5 expression, resulting in the detoxification of ROS to confer oxidative stress tolerance in microalgae. © 2023 John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
URI
https://pr.ibs.re.kr/handle/8788114/14055
DOI
10.1111/plb.13552
ISSN
1435-8603
Appears in Collections:
Center for Genome Engineering(유전체 교정 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse