Odd covers of graphs
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Buchanan, Calum | - |
dc.contributor.author | Alexander Clifton | - |
dc.contributor.author | Culver, Eric | - |
dc.contributor.author | Nie, Jiaxi | - |
dc.contributor.author | O'Neill, Jason | - |
dc.contributor.author | Rombach, Puck | - |
dc.contributor.author | Yin, Mei | - |
dc.date.accessioned | 2023-09-13T22:01:56Z | - |
dc.date.available | 2023-09-13T22:01:56Z | - |
dc.date.created | 2023-05-24 | - |
dc.date.issued | 2023-05 | - |
dc.identifier.issn | 0364-9024 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/13921 | - |
dc.description.abstract | Given a finite simple graph G $G$, an odd cover of G $G$ is a collection of complete bipartite graphs, or bicliques, in which each edge of G $G$ appears in an odd number of bicliques, and each nonedge of G $G$ appears in an even number of bicliques. We denote the minimum cardinality of an odd cover of G $G$ by b2(G) ${b}_{2}(G)$ and prove that b2(G) ${b}_{2}(G)$ is bounded below by half of the rank over F2 ${{\mathbb{F}}}_{2}$ of the adjacency matrix of G $G$. We show that this lower bound is tight in the case when G $G$ is a bipartite graph and almost tight when G $G$ is an odd cycle. However, we also present an infinite family of graphs which shows that this lower bound can be arbitrarily far away from b2(G) ${b}_{2}(G)$. Babai and Frankl proposed the "odd cover problem," which in our language is equivalent to determining b2(Kn) ${b}_{2}({K}_{n})$. In this paper, we determine that b2(Kn) ${b}_{2}({K}_{n})$ is n/2 $n\unicode{x02215}2$ when 8 divide n $8| n$ and is (n+1)/2 $(n+1)\unicode{x02215}2$ when n $n$ is equivalent to 1 or -1 $-1$ modulo 8. | - |
dc.language | 영어 | - |
dc.publisher | WILEY | - |
dc.title | Odd covers of graphs | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000981508000001 | - |
dc.identifier.scopusid | 2-s2.0-85158171896 | - |
dc.identifier.rimsid | 80832 | - |
dc.contributor.affiliatedAuthor | Alexander Clifton | - |
dc.identifier.doi | 10.1002/jgt.22970 | - |
dc.identifier.bibliographicCitation | JOURNAL OF GRAPH THEORY, v.104, no.2, pp.420 - 439 | - |
dc.relation.isPartOf | JOURNAL OF GRAPH THEORY | - |
dc.citation.title | JOURNAL OF GRAPH THEORY | - |
dc.citation.volume | 104 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 420 | - |
dc.citation.endPage | 439 | - |
dc.type.docType | Article; Early Access | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordAuthor | bipartite subgraph complementation | - |
dc.subject.keywordAuthor | complete bipartite graph | - |
dc.subject.keywordAuthor | Graham-Pollak | - |
dc.subject.keywordAuthor | odd cover problem | - |