BROWSE

Related Scientist

jung,yangouk's photo.

jung,yangouk
나노물질및화학반응연구단
more info

ITEM VIEW & DOWNLOAD

Volume-conserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography

Cited 102 time in webofscience Cited 108 time in scopus
1,928 Viewed 512 Downloaded
Title
Volume-conserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography
Author(s)
Yang Ouk Jung; Lee, Jae Hyuk; Kim, Joonghan; Schmidt, Marius; Moffat, Keith; Srajer, Vukica; Hyot Cherl Ihee
Publication Date
2013-03
Journal
NATURE CHEMISTRY, v.5, no.3, pp.212 - 220
Publisher
NATURE PUBLISHING GROUP
Abstract
Trans-to-cis isomerization, the key reaction in photoactive proteins, usually cannot occur through the standard one-bond-flip mechanism. Owing to spatial constraints imposed by a protein environment, isomerization probably proceeds through a volume-conserving mechanism in which highly choreographed atomic motions are expected, the details of which have not yet been observed directly. Here we employ time-resolved X-ray crystallography to visualize the isomerization of the p-coumaric acid chromophore in photoactive yellow protein with a time resolution of 100 ps and a spatial resolution of 1.6 Å. The structure of the earliest intermediate (IT) resembles a highly strained transition state in which the torsion angle is located halfway between the trans- and cis-isomers. The reaction trajectory of IT bifurcates into two structurally distinctcis intermediates via hula-twist and bicycle-pedal pathways. The bifurcating reaction pathways can be controlled by weakening the hydrogen bond between the chromophore and an adjacent residue through E46Q mutation, which switches off the bicycle-pedal pathway.
URI
https://pr.ibs.re.kr/handle/8788114/1376
DOI
10.1038/NCHEM.1565
ISSN
1755-4330
Appears in Collections:
Center for Nanomaterials and Chemical Reactions(나노물질 및 화학반응 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
Y.O.Jung_Ihee_NatureChemistry_2013_Volume-conservingtrans-cisisomerizationpathways~.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse