BROWSE

Related Scientist

abhishek,methuku's photo.

abhishek,methuku
이산수학그룹
more info

ITEM VIEW & DOWNLOAD

Bipartite Turán Problems for Ordered Graphs

DC Field Value Language
dc.contributor.authorAbhishek Methuku-
dc.contributor.authorTomon, István-
dc.date.accessioned2023-08-08T22:04:24Z-
dc.date.available2023-08-08T22:04:24Z-
dc.date.created2023-04-17-
dc.date.issued2022-12-
dc.identifier.issn0209-9683-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/13735-
dc.description.abstractA zero-one matrix M contains a zero-one matrix A if one can delete some rows and columns of M, and turn some 1-entries into 0-entries such that the resulting matrix is A. The extremal number of A, denoted by ex(n,A), is the maximum number of 1-entries in an n×n sized matrix M that does not contain A. A matrix A is column-t-partite (or row-t-partite), if it can be cut along the columns (or rows) into t submatrices such that every row (or column) of these submatrices contains at most one 1-entry. We prove that if A is column-t-partite, then ex(n,A)<n2− 1 t + 1 t2 +o(1) , and if A is both column- and row-t-partite, then ex(n,A)<n2− 1 t +o(1). Our proof combines a novel density-increment-type argument with the celebrated dependent random choice method. Results about the extremal numbers of zero-one matrices translate into results about the Tur´an numbers of bipartite ordered graphs. In particular, a zero-one matrix with at most t 1-entries in each row corresponds to a bipartite ordered graph with maximum degree t in one of its vertex classes. Our results are partially motivated by a well-known result of F¨uredi (1991) and Alon, Krivelevich, Sudakov (2003) stating that if H is a bipartite graph with maximum degree t in one of the vertex classes, then ex(n,H) = O(n 2− 1 t ). The aim of the present paper is to establish similar general results about the extremal numbers of ordered graphs.-
dc.language영어-
dc.publisherSpringer Verlag-
dc.titleBipartite Turán Problems for Ordered Graphs-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000742818000001-
dc.identifier.scopusid2-s2.0-85123112893-
dc.identifier.rimsid80517-
dc.contributor.affiliatedAuthorAbhishek Methuku-
dc.identifier.doi10.1007/s00493-021-4296-0-
dc.identifier.bibliographicCitationCombinatorica, v.42, no.6, pp.895 - 911-
dc.relation.isPartOfCombinatorica-
dc.citation.titleCombinatorica-
dc.citation.volume42-
dc.citation.number6-
dc.citation.startPage895-
dc.citation.endPage911-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Appears in Collections:
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > Discrete Mathematics Group(이산 수학 그룹) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse