Bipartite Turán Problems for Ordered Graphs
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abhishek Methuku | - |
dc.contributor.author | Tomon, István | - |
dc.date.accessioned | 2023-08-08T22:04:24Z | - |
dc.date.available | 2023-08-08T22:04:24Z | - |
dc.date.created | 2023-04-17 | - |
dc.date.issued | 2022-12 | - |
dc.identifier.issn | 0209-9683 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/13735 | - |
dc.description.abstract | A zero-one matrix M contains a zero-one matrix A if one can delete some rows and columns of M, and turn some 1-entries into 0-entries such that the resulting matrix is A. The extremal number of A, denoted by ex(n,A), is the maximum number of 1-entries in an n×n sized matrix M that does not contain A. A matrix A is column-t-partite (or row-t-partite), if it can be cut along the columns (or rows) into t submatrices such that every row (or column) of these submatrices contains at most one 1-entry. We prove that if A is column-t-partite, then ex(n,A)<n2− 1 t + 1 t2 +o(1) , and if A is both column- and row-t-partite, then ex(n,A)<n2− 1 t +o(1). Our proof combines a novel density-increment-type argument with the celebrated dependent random choice method. Results about the extremal numbers of zero-one matrices translate into results about the Tur´an numbers of bipartite ordered graphs. In particular, a zero-one matrix with at most t 1-entries in each row corresponds to a bipartite ordered graph with maximum degree t in one of its vertex classes. Our results are partially motivated by a well-known result of F¨uredi (1991) and Alon, Krivelevich, Sudakov (2003) stating that if H is a bipartite graph with maximum degree t in one of the vertex classes, then ex(n,H) = O(n 2− 1 t ). The aim of the present paper is to establish similar general results about the extremal numbers of ordered graphs. | - |
dc.language | 영어 | - |
dc.publisher | Springer Verlag | - |
dc.title | Bipartite Turán Problems for Ordered Graphs | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000742818000001 | - |
dc.identifier.scopusid | 2-s2.0-85123112893 | - |
dc.identifier.rimsid | 80517 | - |
dc.contributor.affiliatedAuthor | Abhishek Methuku | - |
dc.identifier.doi | 10.1007/s00493-021-4296-0 | - |
dc.identifier.bibliographicCitation | Combinatorica, v.42, no.6, pp.895 - 911 | - |
dc.relation.isPartOf | Combinatorica | - |
dc.citation.title | Combinatorica | - |
dc.citation.volume | 42 | - |
dc.citation.number | 6 | - |
dc.citation.startPage | 895 | - |
dc.citation.endPage | 911 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |