Self-assembled incorporation of modulated block copolymer nanostructures in phase-change memory for switching power reduction
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park W.I. | - |
dc.contributor.author | You B.K. | - |
dc.contributor.author | Mun B.H. | - |
dc.contributor.author | Hyeon Kook Seo | - |
dc.contributor.author | Jeong Yong Lee | - |
dc.contributor.author | Hosaka S. | - |
dc.contributor.author | Yin Y. | - |
dc.contributor.author | Ross C.A. | - |
dc.contributor.author | Lee K.J. | - |
dc.contributor.author | Jung Y.S. | - |
dc.date.available | 2015-04-20T07:11:07Z | - |
dc.date.created | 2014-09-12 | - |
dc.date.issued | 2013-03 | - |
dc.identifier.issn | 1936-0851 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/1372 | - |
dc.description.abstract | Phase change memory (PCM), which exploits the phase change behavior of chalcogenide materials, affords tremendous advantages over conventional solid-state memory due to its nonvolatility, high speed, and scalability. However, high power consumption of PCM poses a critical challenge and has been the most significant obstacle to its widespread commercialization. Here, we present a novel approach based on the self-assembly of a block copolymer (BCP) to form a thin nanostructured SiOx layer that locally blocks the contact between a heater electrode and a phase change material. The writing current is decreased 5-fold (corresponding to a power reduction by 1/20) as the occupying area fraction of SiOx nanostructures is increased from a fill factor of 9.1% to 63.6%. Simulation results theoretically explain the current reduction mechanism by localized switching of BCP-blocked phase change materials. © 2013 American Chemical Society. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.subject | block copolymers . self-assembly . phase change memory | - |
dc.title | Self-assembled incorporation of modulated block copolymer nanostructures in phase-change memory for switching power reduction | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000316846700085 | - |
dc.identifier.scopusid | 2-s2.0-84875650179 | - |
dc.identifier.rimsid | 54083 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Hyeon Kook Seo | - |
dc.contributor.affiliatedAuthor | Jeong Yong Lee | - |
dc.identifier.doi | 10.1021/nn4000176 | - |
dc.identifier.bibliographicCitation | ACS NANO, v.7, no.3, pp.2651 - 2658 | - |
dc.citation.title | ACS NANO | - |
dc.citation.volume | 7 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 2651 | - |
dc.citation.endPage | 2658 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 37 | - |
dc.description.scptc | 41 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | block copolymers | - |
dc.subject.keywordAuthor | phase change memory | - |
dc.subject.keywordAuthor | self-assembly | - |