Prediction of efficiencies for diverse prime editing systems in multiple cell types
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Goosang Yu | - |
dc.contributor.author | Hui Kwon Kim | - |
dc.contributor.author | Jinman Park | - |
dc.contributor.author | Hyunjong Kwak | - |
dc.contributor.author | Yumin Cheong | - |
dc.contributor.author | Dongyoung Kim | - |
dc.contributor.author | Jiyun Kim | - |
dc.contributor.author | Jisung Kim | - |
dc.contributor.author | Hyongbum Henry Kim | - |
dc.date.accessioned | 2023-06-29T22:00:35Z | - |
dc.date.available | 2023-06-29T22:00:35Z | - |
dc.date.created | 2023-05-24 | - |
dc.date.issued | 2023-05 | - |
dc.identifier.issn | 0092-8674 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/13518 | - |
dc.description.abstract | Applications of prime editing are often limited due to insufficient efficiencies, and it can require substantial time and resources to determine the most efficient pegRNAs and prime editors (PEs) to generate a desired edit under various experimental conditions. Here, we evaluated prime editing efficiencies for a total of 338,996 pairs of pegRNAs including 3,979 epegRNAs and target sequences in an error-free manner. These datasets enabled a systematic determination of factors affecting prime editing efficiencies. Then, we developed computational models, named DeepPrime and DeepPrime-FT, that can predict prime editing efficiencies for eight prime editing systems in seven cell types for all possible types of editing of up to 3 base pairs. We also extensively profiled the prime editing efficiencies at mismatched targets and developed a computational model predicting editing efficiencies at such targets. These computational models, together with our improved knowledge about prime editing efficiency determinants, will greatly facilitate prime editing applications. © 2023 Elsevier Inc. | - |
dc.language | 영어 | - |
dc.publisher | Elsevier B.V. | - |
dc.title | Prediction of efficiencies for diverse prime editing systems in multiple cell types | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001046854900001 | - |
dc.identifier.scopusid | 2-s2.0-85157995114 | - |
dc.identifier.rimsid | 80827 | - |
dc.contributor.affiliatedAuthor | Hyongbum Henry Kim | - |
dc.identifier.doi | 10.1016/j.cell.2023.03.034 | - |
dc.identifier.bibliographicCitation | Cell, v.186, no.10, pp.2256 - 2272.e23 | - |
dc.relation.isPartOf | Cell | - |
dc.citation.title | Cell | - |
dc.citation.volume | 186 | - |
dc.citation.number | 10 | - |
dc.citation.startPage | 2256 | - |
dc.citation.endPage | 2272.e23 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Biochemistry & Molecular Biology | - |
dc.relation.journalResearchArea | Cell Biology | - |
dc.relation.journalWebOfScienceCategory | Biochemistry & Molecular Biology | - |
dc.relation.journalWebOfScienceCategory | Cell Biology | - |
dc.subject.keywordAuthor | deep learning | - |
dc.subject.keywordAuthor | efficiency | - |
dc.subject.keywordAuthor | features | - |
dc.subject.keywordAuthor | high-throughput evaluations | - |
dc.subject.keywordAuthor | off-target effects | - |
dc.subject.keywordAuthor | prediction | - |
dc.subject.keywordAuthor | prime editing | - |
dc.subject.keywordAuthor | prime editors | - |
dc.subject.keywordAuthor | sequence | - |