BROWSE

Related Scientist

cn's photo.

cn
나노의학연구단
more info

ITEM VIEW & DOWNLOAD

Prediction of efficiencies for diverse prime editing systems in multiple cell types

DC Field Value Language
dc.contributor.authorGoosang Yu-
dc.contributor.authorHui Kwon Kim-
dc.contributor.authorJinman Park-
dc.contributor.authorHyunjong Kwak-
dc.contributor.authorYumin Cheong-
dc.contributor.authorDongyoung Kim-
dc.contributor.authorJiyun Kim-
dc.contributor.authorJisung Kim-
dc.contributor.authorHyongbum Henry Kim-
dc.date.accessioned2023-06-29T22:00:35Z-
dc.date.available2023-06-29T22:00:35Z-
dc.date.created2023-05-24-
dc.date.issued2023-05-
dc.identifier.issn0092-8674-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/13518-
dc.description.abstractApplications of prime editing are often limited due to insufficient efficiencies, and it can require substantial time and resources to determine the most efficient pegRNAs and prime editors (PEs) to generate a desired edit under various experimental conditions. Here, we evaluated prime editing efficiencies for a total of 338,996 pairs of pegRNAs including 3,979 epegRNAs and target sequences in an error-free manner. These datasets enabled a systematic determination of factors affecting prime editing efficiencies. Then, we developed computational models, named DeepPrime and DeepPrime-FT, that can predict prime editing efficiencies for eight prime editing systems in seven cell types for all possible types of editing of up to 3 base pairs. We also extensively profiled the prime editing efficiencies at mismatched targets and developed a computational model predicting editing efficiencies at such targets. These computational models, together with our improved knowledge about prime editing efficiency determinants, will greatly facilitate prime editing applications. © 2023 Elsevier Inc.-
dc.language영어-
dc.publisherElsevier B.V.-
dc.titlePrediction of efficiencies for diverse prime editing systems in multiple cell types-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001046854900001-
dc.identifier.scopusid2-s2.0-85157995114-
dc.identifier.rimsid80827-
dc.contributor.affiliatedAuthorHyongbum Henry Kim-
dc.identifier.doi10.1016/j.cell.2023.03.034-
dc.identifier.bibliographicCitationCell, v.186, no.10, pp.2256 - 2272.e23-
dc.relation.isPartOfCell-
dc.citation.titleCell-
dc.citation.volume186-
dc.citation.number10-
dc.citation.startPage2256-
dc.citation.endPage2272.e23-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaCell Biology-
dc.relation.journalWebOfScienceCategoryBiochemistry & Molecular Biology-
dc.relation.journalWebOfScienceCategoryCell Biology-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorefficiency-
dc.subject.keywordAuthorfeatures-
dc.subject.keywordAuthorhigh-throughput evaluations-
dc.subject.keywordAuthoroff-target effects-
dc.subject.keywordAuthorprediction-
dc.subject.keywordAuthorprime editing-
dc.subject.keywordAuthorprime editors-
dc.subject.keywordAuthorsequence-
Appears in Collections:
Center for Nanomedicine (나노의학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse