BROWSE

Related Scientist

cces's photo.

cces
강상관계물질연구단
more info

ITEM VIEW & DOWNLOAD

Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface

DC Field Value Language
dc.contributor.authorY. W. Yin-
dc.contributor.authorBurton, J. D.-
dc.contributor.authorKim, Y-M.-
dc.contributor.authorBorisevich, A. Y.-
dc.contributor.authorPennycook, S. J.-
dc.contributor.authorSang Mo Yang-
dc.contributor.authorTaewon Noh-
dc.contributor.authorGruverman, A.-
dc.contributor.authorLi, X. G.-
dc.contributor.authorTsymbal, E. Y.-
dc.contributor.authorLi, Qi-
dc.date.available2015-04-20T07:03:13Z-
dc.date.created2014-08-11-
dc.date.issued2013-05-
dc.identifier.issn1476-1122-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/1343-
dc.description.abstractThe range of recently discovered phenomena in complex oxide heterostructures, made possible owing to advances in fabrication techniques, promise new functionalities and device concepts. One issue that has received attention is the bistable electrical modulation of conductivity in ferroelectric tunnel junctions (FTJs) in response to a ferroelectric polarization of the tunnelling barrier, a phenomenon known as the tunnelling electroresistance (TER) effect. Ferroelectric tunnel junctions with ferromagnetic electrodes allow ferroelectric control of the tunnelling spin polarization through the magnetoelectric coupling at the ferromagnet/ferroelectric interface. Here we demonstrate a significant enhancement of TER due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Ferroelectric tunnel junctions consisting of BaTiO3 tunnelling barriers and La 0.7Sr0.3MnO3 electrodes exhibit a TER enhanced by up to ∼ 10,000% by a nanometre-thick La0.5Ca 0.5MnO3 interlayer inserted at one of the interfaces. The observed phenomenon originates from the metal-to-insulator phase transition in La0.5Ca0.5MnO3, driven by the modulation of carrier density through ferroelectric polarization switching. Electrical, ferroelectric and magnetoresistive measurements combined with first-principles calculations provide evidence for a magnetoelectric origin of the enhanced TER, and indicate the presence of defect-mediated conduction in the FTJs. The effect is robust and may serve as a viable route for electronic and spintronic applications. © 2013 Macmillan Publishers Limited. All rights reserved.-
dc.description.uri1-
dc.language영어-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectElectroresistance effects-
dc.subjectFerroelectric polarization-
dc.subjectFerroelectric tunnel junctions-
dc.subjectFerromagnetic electrodes-
dc.subjectFirst-principles calculation-
dc.subjectInduced phase transition-
dc.subjectMagnetoelectric couplings-
dc.subjectMetal-to-Insulator phase transition-
dc.subjectCalcium-
dc.subjectCalculations-
dc.subjectElectric resistance-
dc.subjectElectrodes-
dc.subjectEnhanced magnetoresistance-
dc.subjectManganese oxide-
dc.subjectModulation-
dc.subjectTunnel junctions-
dc.subjectFerroelectricity-
dc.titleEnhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000317954800008-
dc.identifier.scopusid2-s2.0-84876690390-
dc.identifier.rimsid196ko
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorSang Mo Yang-
dc.contributor.affiliatedAuthorTaewon Noh-
dc.identifier.doi10.1038/NMAT3564-
dc.identifier.bibliographicCitationNATURE MATERIALS, v.12, no.5, pp.397 - 402-
dc.citation.titleNATURE MATERIALS-
dc.citation.volume12-
dc.citation.number5-
dc.citation.startPage397-
dc.citation.endPage402-
dc.date.scptcdate2018-10-01-
dc.description.wostc171-
dc.description.scptc175-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusSPIN POLARIZATION-
dc.subject.keywordPlusJUNCTIONS-
dc.subject.keywordPlusSTATES-
dc.subject.keywordPlusHETEROSTRUCTURES-
dc.subject.keywordPlusBARRIERS-
dc.subject.keywordPlusPHYSICS-
Appears in Collections:
Center for Correlated Electron Systems(강상관계 물질 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
2013-05-Nature Materials-Enhanced tunnelling.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse