FLAG BOTT MANIFOLDS AND THE TORIC CLOSURE OF A GENERIC ORBIT ASSOCIATED TO A GENERALIZED BOTT MANIFOLD
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Eun Jeong Lee | - |
dc.contributor.author | Shintaro Kuroki | - |
dc.contributor.author | Jongbaek Song | - |
dc.contributor.author | Dong Youp Suh | - |
dc.date.accessioned | 2023-05-21T22:00:40Z | - |
dc.date.available | 2023-05-21T22:00:40Z | - |
dc.date.created | 2021-01-06 | - |
dc.date.issued | 2020-12 | - |
dc.identifier.issn | 0030-8730 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/13373 | - |
dc.description.abstract | To a direct sum of holomorphic line bundles, we can associate two librations, whose fibers are, respectively, the corresponding full flag manifold and the corresponding projective space. Iterating these procedures gives, respectively, a flag Bolt tower and a generalized Bott tower. It is known that a generalized Bolt tower is a toric manifold. However a flag Bolt tower is not toric in general but we show that it is a GKl'I manifold, and we also show that for a given generalized Bott tower we can find the associated flag Bott tower so that the closure of a generic torus orbit in the latter is a blow-up of the former along certain invariant submanifi olds. We use GKM theory together with toric geometric arguments. | - |
dc.language | 영어 | - |
dc.publisher | PACIFIC JOURNAL MATHEMATICS | - |
dc.title | FLAG BOTT MANIFOLDS AND THE TORIC CLOSURE OF A GENERIC ORBIT ASSOCIATED TO A GENERALIZED BOTT MANIFOLD | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000597944100005 | - |
dc.identifier.scopusid | 2-s2.0-85098739926 | - |
dc.identifier.rimsid | 74191 | - |
dc.contributor.affiliatedAuthor | Eun Jeong Lee | - |
dc.identifier.doi | 10.2140/pjm.2020.308.347 | - |
dc.identifier.bibliographicCitation | PACIFIC JOURNAL OF MATHEMATICS, v.308, no.2, pp.347 - 392 | - |
dc.relation.isPartOf | PACIFIC JOURNAL OF MATHEMATICS | - |
dc.citation.title | PACIFIC JOURNAL OF MATHEMATICS | - |
dc.citation.volume | 308 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 347 | - |
dc.citation.endPage | 392 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | TOPOLOGICAL CLASSIFICATION | - |
dc.subject.keywordPlus | EQUIVARIANT COHOMOLOGY | - |
dc.subject.keywordPlus | QUASITORIC MANIFOLDS | - |
dc.subject.keywordPlus | TORUS | - |
dc.subject.keywordAuthor | flag Bolt tower | - |
dc.subject.keywordAuthor | flag Bolt manifold | - |
dc.subject.keywordAuthor | generalized Bott manifold | - |
dc.subject.keywordAuthor | GKM theory | - |
dc.subject.keywordAuthor | toric manifold | - |
dc.subject.keywordAuthor | blow-up | - |