Analysis of contact Cauchy-Riemann maps III: Energy, bubbling and Fredholm theory
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yong-Geun Oh | - |
dc.date.accessioned | 2023-05-02T22:01:32Z | - |
dc.date.available | 2023-05-02T22:01:32Z | - |
dc.date.created | 2022-12-27 | - |
dc.date.issued | 2023-04 | - |
dc.identifier.issn | 1664-3607 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/13301 | - |
dc.description.abstract | In [Y.-G. Oh and R. Wang, Analysis of contact Cauchy-Riemann maps I: A priori C-k estimates and asymptotic convergence, Osaka J. Math. 55(4) (2018) 647-679; Y.-G. Oh and R. Wang, Analysis of contact Cauchy-Riemann maps II: Canonical neighborhoods and exponential convergence for the Morse-Bott case, Nagoya Math. J. 231 (2018) 128-223], the authors studied the nonlinear elliptic system (& part;)over bar(pi)w = 0, d(w & lowast;lambda o j) = 0 without involving symplectization for each given contact triad (Q, lambda, J), and established the a priori W-k,W-2 elliptic estimates and proved the asymptotic (subsequence) convergence of the map w : (sigma)over dot -> Q for any solution, called a contact instanton, on (sigma)over dot under the hypothesis llw & lowast;lambda ll(C0) < infinity and d(pi)w is an element of L-2 & cap; L-4. The asymptotic limit of a contact instanton is a "spiraling' instanton along a "rotating' Reeb orbit near each puncture on a punctured Riemann surface (sigma)over dot. Each limiting Reeb orbit carries a "charge' arising from the integral of w & lowast;lambda o j. In this paper, we further develop analysis of contact instantons, especially the W-1,W-p estimate for p > 2 (or the C-1-estimate), which is essential for the study of compactification of the moduli space and the relevant Fredholm theory for contact instantons. In particular, we define a Hofer-type off-shell energy E-lambda(j, w) for any pair (j, w) with a smooth map w satisfying d(w & lowast;lambda o j) = 0, and develop the bubbling-off analysis and prove an epsilon-regularity result. We also develop the relevant Fredholm theory and carry out index calculations (for the case of vanishing charge). | - |
dc.language | 영어 | - |
dc.publisher | WORLD SCIENTIFIC PUBL CO PTE LTD | - |
dc.title | Analysis of contact Cauchy-Riemann maps III: Energy, bubbling and Fredholm theory | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000895399200001 | - |
dc.identifier.scopusid | 2-s2.0-85144316310 | - |
dc.identifier.rimsid | 79557 | - |
dc.contributor.affiliatedAuthor | Yong-Geun Oh | - |
dc.identifier.doi | 10.1142/S1664360722500114 | - |
dc.identifier.bibliographicCitation | BULLETIN OF MATHEMATICAL SCIENCES, v.13, no.1, pp.1 - 61 | - |
dc.relation.isPartOf | BULLETIN OF MATHEMATICAL SCIENCES | - |
dc.citation.title | BULLETIN OF MATHEMATICAL SCIENCES | - |
dc.citation.volume | 13 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 61 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | PSEUDO-HOLOMORPHIC-CURVES | - |
dc.subject.keywordPlus | WEINSTEIN CONJECTURE | - |
dc.subject.keywordPlus | INDEX | - |
dc.subject.keywordPlus | EXISTENCE | - |
dc.subject.keywordAuthor | e-regularity theorem | - |
dc.subject.keywordAuthor | Fredholm theory | - |
dc.subject.keywordAuthor | Contact manifolds | - |
dc.subject.keywordAuthor | contact instanton (action, charge and potential) | - |
dc.subject.keywordAuthor | asymptotic Hick&apos | - |
dc.subject.keywordAuthor | s field | - |
dc.subject.keywordAuthor | Hofer-type energy | - |
dc.subject.keywordAuthor | bubbling-off analysis | - |