Graded rings of Hermitian modular forms with singularities
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Haowu Wang | - |
dc.contributor.author | Williams, Brandon | - |
dc.date.accessioned | 2023-01-27T00:35:40Z | - |
dc.date.available | 2023-01-27T00:35:40Z | - |
dc.date.created | 2022-01-25 | - |
dc.date.issued | 2023-01 | - |
dc.identifier.issn | 0025-2611 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12797 | - |
dc.description.abstract | We study graded rings of meromorphic Hermitian modular forms of degree two whose poles are supported on an arrangement of Heegner divisors. For the group SU2,2(O-K) where K is the imaginary-quadratic number field of discriminant -d, d is an element of {4, 7, 8, 11, 15, 19, 20, 24} we obtain a polynomial algebra without relations. In particular the Looijenga compactifications of the arrangement complements are weighted projective spaces. | - |
dc.language | 영어 | - |
dc.publisher | Springer Verlag | - |
dc.title | Graded rings of Hermitian modular forms with singularities | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000742301500001 | - |
dc.identifier.scopusid | 2-s2.0-85123071475 | - |
dc.identifier.rimsid | 77154 | - |
dc.contributor.affiliatedAuthor | Haowu Wang | - |
dc.identifier.doi | 10.1007/s00229-021-01367-7 | - |
dc.identifier.bibliographicCitation | Manuscripta Mathematica, v.170, no.1-2, pp.283 - 311 | - |
dc.relation.isPartOf | Manuscripta Mathematica | - |
dc.citation.title | Manuscripta Mathematica | - |
dc.citation.volume | 170 | - |
dc.citation.number | 1-2 | - |
dc.citation.startPage | 283 | - |
dc.citation.endPage | 311 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | THEOREM | - |