BROWSE

Related Scientist

lee,eunjeong's photo.

lee,eunjeong
기하학수리물리연구단
more info

ITEM VIEW & DOWNLOAD

Small toric resolutions of toric varieties of string polytopes with small indices

DC Field Value Language
dc.contributor.authorCho, Yunhyung-
dc.contributor.authorKim, Yoosik-
dc.contributor.authorEunjeong Lee-
dc.contributor.authorKyeong-Dong Park-
dc.date.accessioned2023-01-27T00:35:29Z-
dc.date.available2023-01-27T00:35:29Z-
dc.date.created2022-03-15-
dc.date.issued2023-02-
dc.identifier.issn0219-1997-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/12793-
dc.description.abstractLet G be a semisimple algebraic group over ℂ. For a reduced word i of the longest element in the Weyl group of G and a dominant integral weight λ, one can construct the string polytope Δi(λ), whose lattice points encode the character of the irreducible representation Vλ. The string polytope Δi(λ) is singular in general and combinatorics of string polytopes heavily depends on the choice of i. In this paper, we study combinatorics of string polytopes when G = SLn+1(ℂ), and present a sufficient condition on i such that the toric variety XΔi(λ) of the string polytope Δi(λ) has a small toric resolution. Indeed, when i has small indices and λ is regular, we explicitly construct a small toric resolution of the toric variety XΔ i(λ) using a Bott manifold. Our main theorem implies that a toric variety of any string polytope admits a small toric resolution when n < 4. As a byproduct, we show that if i has small indices then Δi(λ) is integral for any dominant integral weight λ, which in particular implies that the anticanonical limit toric variety XΔ i(λP) of a partial flag variety G/P is Gorenstein Fano. Furthermore, we apply our result to symplectic topology of the full flag manifold G/B and obtain a formula of the disk potential of the Lagrangian torus fibration on G/B obtained from a flat toric degeneration of G/B to the toric variety XΔ i(λ).-
dc.language영어-
dc.publisherWorld Scientific-
dc.titleSmall toric resolutions of toric varieties of string polytopes with small indices-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000849384600001-
dc.identifier.scopusid2-s2.0-85125539744-
dc.identifier.rimsid77878-
dc.contributor.affiliatedAuthorEunjeong Lee-
dc.contributor.affiliatedAuthorKyeong-Dong Park-
dc.identifier.doi10.1142/S0219199721501121-
dc.identifier.bibliographicCitationCommunications in Contemporary Mathematics, v.25, no.1-
dc.relation.isPartOfCommunications in Contemporary Mathematics-
dc.citation.titleCommunications in Contemporary Mathematics-
dc.citation.volume25-
dc.citation.number1-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusSCHUBERT VARIETIES-
dc.subject.keywordPlusCANONICAL BASES-
dc.subject.keywordPlusDEGENERATIONS-
dc.subject.keywordPlusFLAG-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusBODIES-
dc.subject.keywordAuthor(Floer theoretical) disk potentials-
dc.subject.keywordAuthorBott manifolds-
dc.subject.keywordAuthorSmall resolutions of singularities-
dc.subject.keywordAuthorString polytopes-
Appears in Collections:
Center for Geometry and Physics(기하학 수리물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse