BROWSE

Related Scientist

cqn's photo.

cqn
양자나노과학연구단
more info

ITEM VIEW & DOWNLOAD

Development of a scanning tunneling microscope for variable temperature electron spin resonance

Cited 0 time in webofscience Cited 0 time in scopus
350 Viewed 0 Downloaded
Title
Development of a scanning tunneling microscope for variable temperature electron spin resonance
Author(s)
Jiyoon Hwang; Denis Krylov; Elbertse, Robbie; Sangwon Yoon; Taehong Ahn; Jeongmin Oh; Lei Fang; Jang, Won-Jun; Franklin H. Cho; Andreas J. Heinrich; Yujeong Bae
Publication Date
2022-09
Journal
Review of Scientific Instruments, v.93, no.9
Publisher
American Institute of Physics Inc.
Abstract
© 2022 Author(s).Recent advances in improving the spectroscopic energy resolution in scanning tunneling microscopy (STM) have been achieved by integrating electron spin resonance (ESR) with STM. Here, we demonstrate the design and performance of a homebuilt STM capable of ESR at temperatures ranging from 1 to 10 K. The STM is incorporated with a homebuilt Joule-Thomson refrigerator and a two-axis vector magnet. Our STM design allows for the deposition of atoms and molecules directly into the cold STM, eliminating the need to extract the sample for deposition. In addition, we adopt two methods to apply radio-frequency (RF) voltages to the tunnel junction: the early design of wiring to the STM tip directly and a more recent idea to use an RF antenna. Direct comparisons of ESR results measured using the two methods and simulations of electric field distribution around the tunnel junction show that, despite their different designs and capacitive coupling to the tunnel junction, there is no discernible difference in the driving and detection of ESR. Furthermore, at a magnetic field of ∼1.6 T, we observe ESR signals (near 40 GHz) sustained up to 10 K, which is the highest temperature for ESR-STM measurement reported to date, to the best of our knowledge. Although the ESR intensity exponentially decreases with increasing temperature, our ESR-STM system with low noise at the tunnel junction allows us to measure weak ESR signals with intensities of a few fA. Our new design of an ESR-STM system, which is operational in a large frequency and temperature range, can broaden the use of ESR spectroscopy in STM and enable the simple modification of existing STM systems, which will hopefully accelerate a generalized use of ESR-STM.
URI
https://pr.ibs.re.kr/handle/8788114/12746
DOI
10.1063/5.0096081
ISSN
0034-6748
Appears in Collections:
Center for Quantum Nanoscience(양자나노과학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse