Ferroelectricity-Driven Phonon Berry Curvature and Nonlinear Phonon Hall Transports
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Im, Jino | - |
dc.contributor.author | Choong H. Kim | - |
dc.contributor.author | Jin, Hosub | - |
dc.date.accessioned | 2023-01-26T02:39:15Z | - |
dc.date.available | 2023-01-26T02:39:15Z | - |
dc.date.created | 2022-10-29 | - |
dc.date.issued | 2022-10 | - |
dc.identifier.issn | 1530-6984 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12659 | - |
dc.description.abstract | Berry curvature (BC) governs topological phases of matter and generates anomalous transport. When a magnetic field is applied, phonons can acquire BC indirectly through spin-lattice coupling, leading to a linear phonon Hall effect. Here, we show that polar lattice distortion directly couples to a phonon BC dipole, which causes a switchable nonlinear phonon Hall effect. In a SnS monolayer, the in-plane ferroelectricity induces a phonon BC and leads to the phononic version of the nonvolatile BC memory effect. As a new type of ferroelectricity-phonon coupling, the phonon Rashba effect emerges and opens a mass gap in tilted Weyl phonon modes, resulting in a large phonon BC dipole. Furthermore, our ab initio non-equilibrium molecular dynamics simulations reveal that nonlinear phonon Hall transport occurs in a controllable manner via ferroelectric switching. The ferroelectricity-driven phonon BC and corresponding nonlinear phonon transports provide a novel scheme for constructing topological phononic transport/memory devices. | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | Ferroelectricity-Driven Phonon Berry Curvature and Nonlinear Phonon Hall Transports | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000869706400001 | - |
dc.identifier.scopusid | 2-s2.0-85139558830 | - |
dc.identifier.rimsid | 79162 | - |
dc.contributor.affiliatedAuthor | Choong H. Kim | - |
dc.identifier.doi | 10.1021/acs.nanolett.2c03095 | - |
dc.identifier.bibliographicCitation | NANO LETTERS, v.22, no.20, pp.8281 - 8286 | - |
dc.relation.isPartOf | NANO LETTERS | - |
dc.citation.title | NANO LETTERS | - |
dc.citation.volume | 22 | - |
dc.citation.number | 20 | - |
dc.citation.startPage | 8281 | - |
dc.citation.endPage | 8286 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.subject.keywordPlus | WEYL POINTS | - |
dc.subject.keywordPlus | PHASE | - |
dc.subject.keywordAuthor | phonon Berry curvature | - |
dc.subject.keywordAuthor | nonlinear phonon Hall transport | - |
dc.subject.keywordAuthor | ferroelectricity | - |
dc.subject.keywordAuthor | phonon Rashba effect | - |