BROWSE

Related Scientist

cnir's photo.

cnir
뇌과학이미징연구단
more info

ITEM VIEW & DOWNLOAD

Balanced Coexistence of Reversible and Irreversible Covalent Bonds in a Conductive Triple Polymeric Network Enables Stretchable Hydrogels with High Toughness and Adhesiveness

Cited 0 time in webofscience Cited 0 time in scopus
165 Viewed 0 Downloaded
Title
Balanced Coexistence of Reversible and Irreversible Covalent Bonds in a Conductive Triple Polymeric Network Enables Stretchable Hydrogels with High Toughness and Adhesiveness
Author(s)
Kyuha Park; Kyumin Kang; Jungwoo Kim; Sung Dong Kim; Subin Jin; Mikyung Shin; Donghee Son
Publication Date
2022-12
Journal
ACS APPLIED MATERIALS & INTERFACES, v.14, no.50, pp.56395 - 56406
Publisher
AMER CHEMICAL SOC
Abstract
The application of soft hydrogels to stretchable devices has attracted increasing attention in deformable bioelectronics owing to their unique characteristic, "modulus matching between materials and organs". Despite considerable progress, their low toughness, low conductivity, and absence of tissue adhesiveness remain substantial challenges associated with unstable skin-interfacing, where body movements undesirably disturb electrical signal acquisitions. Herein, we report a material design of a highly tough strain-dissipative and skin-adhesive conducting hydrogel fabricated through a facile one-step sol-gel transition and its application to an interactive human- machine interface. The hydrogel comprises a triple polymeric network where irreversible amide linkage of polyacrylamide with alginate and dynamic covalent bonds entailing conjugated polymer chains of poly(3,4-ethylenedioxythiophene)-co-(3-thienylboronic acid) are simultaneously capable of high stretchability (1300% strain), efficient strain dissipation (36,209 J/m2), low electrical resistance (590 omega), and even robust skin adhesiveness (35.0 +/- 5.6 kPa). Based on such decent characteristics, the hydrogel was utilized as a multifunctional layer for successfully performing either electrophysiological cardiac/muscular on-skin sensors or an interactive stretchable human-machine interface.
URI
https://pr.ibs.re.kr/handle/8788114/12492
DOI
10.1021/acsami.2c17676
ISSN
1944-8244
Appears in Collections:
Center for Neuroscience Imaging Research (뇌과학 이미징 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse