Simple lattices and free algebras of modular forms
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Haowu Wang | - |
dc.contributor.author | Williams, Brandon | - |
dc.date.accessioned | 2023-01-26T02:19:06Z | - |
dc.date.available | 2023-01-26T02:19:06Z | - |
dc.date.created | 2023-01-11 | - |
dc.date.issued | 2023-01 | - |
dc.identifier.issn | 0001-8708 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12448 | - |
dc.description.abstract | We study the algebras of modular forms on type IV symmetric domains for simple lattices; that is, lattices for which every Heegner divisor occurs as the divisor of a Borcherds product. For every simple lattice L of signature (n,2) with 3≤n≤10, we prove that the graded algebra of modular forms for the maximal reflection subgroup of the orthogonal group of L is freely generated. We also show that, with five exceptions, the graded algebra of modular forms for the maximal reflection subgroup of the discriminant kernel of L is also freely generated. © 2022 Elsevier Inc. | - |
dc.language | 영어 | - |
dc.publisher | Academic Press | - |
dc.title | Simple lattices and free algebras of modular forms | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000916246800001 | - |
dc.identifier.scopusid | 2-s2.0-85144775119 | - |
dc.identifier.rimsid | 79643 | - |
dc.contributor.affiliatedAuthor | Haowu Wang | - |
dc.identifier.doi | 10.1016/j.aim.2022.108835 | - |
dc.identifier.bibliographicCitation | Advances in Mathematics, v.413 | - |
dc.relation.isPartOf | Advances in Mathematics | - |
dc.citation.title | Advances in Mathematics | - |
dc.citation.volume | 413 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | AUTOMORPHIC PRODUCTS | - |
dc.subject.keywordPlus | BORCHERDS PRODUCTS | - |
dc.subject.keywordPlus | SINGULAR WEIGHT | - |
dc.subject.keywordPlus | GRADED RINGS | - |
dc.subject.keywordPlus | CLASSIFICATION | - |
dc.subject.keywordPlus | VARIETIES | - |
dc.subject.keywordPlus | THEOREM | - |
dc.subject.keywordAuthor | Modular forms on orthogonal groups | - |
dc.subject.keywordAuthor | Reflection groups | - |
dc.subject.keywordAuthor | Simple lattices | - |
dc.subject.keywordAuthor | Symmetric domains of type IV | - |
dc.subject.keywordAuthor | Borcherds products | - |