RAMSEY PROBLEMS FOR BERGE HYPERGRAPHS
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gerbner, D | - |
dc.contributor.author | Abhishek Methuku | - |
dc.contributor.author | Omidi, G | - |
dc.contributor.author | Vizer, M | - |
dc.date.accessioned | 2022-10-17T07:49:43Z | - |
dc.date.available | 2022-10-17T07:49:43Z | - |
dc.date.created | 2021-01-28 | - |
dc.date.issued | 2020-02 | - |
dc.identifier.issn | 0895-4801 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12414 | - |
dc.description.abstract | For a graph G, a hypergraph \scrH is a Berge copy of G (or a Berge-G in short) if there is a bijection f : E(G) \rightarrow E(\scrH ) such that for each e \in E(G) we have e \subseteq f(e). We denote the family of r-uniform hypergraphs that are Berge copies of G by BrG. For families of r-uniform hypergraphs H and H\prime , we denote by R(H,H\prime ) the smallest number n such that in any red-blue coloring of the (hyper)edges of \scrK rn (the complete r-uniform hypergraph on n vertices) there is a monochromatic blue copy of a hypergraph in H or a monochromatic red copy of a hypergraph in H\prime . Rc(H) denotes the smallest number n such that in any coloring of the hyperedges of \scrK rn with c colors, there is a monochromatic copy of a hypergraph in H. In this paper we initiate the general study of the Ramsey problem for Berge hypergraphs, and show that if r > 2c, then Rc(BrKn) = n. In the case r = 2c, we show that Rc(BrKn) = n+1, and if G is a noncomplete graph on n vertices, then Rc(BrG) = n, assuming n is large enough. In the case r < 2c we also obtain bounds on Rc(BrKn). Moreover, we also determine the exact value of R(B3T1,B3T2) for every pair of trees T1 and T2. | - |
dc.language | 영어 | - |
dc.publisher | Society for Industrial and Applied Mathematics | - |
dc.title | RAMSEY PROBLEMS FOR BERGE HYPERGRAPHS | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000546886700017 | - |
dc.identifier.scopusid | 2-s2.0-85084815764 | - |
dc.identifier.rimsid | 74396 | - |
dc.contributor.affiliatedAuthor | Abhishek Methuku | - |
dc.identifier.doi | 10.1137/18M1225227 | - |
dc.identifier.bibliographicCitation | SIAM Journal on Discrete Mathematics, v.34, no.1, pp.351 - 369 | - |
dc.relation.isPartOf | SIAM Journal on Discrete Mathematics | - |
dc.citation.title | SIAM Journal on Discrete Mathematics | - |
dc.citation.volume | 34 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 351 | - |
dc.citation.endPage | 369 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.subject.keywordAuthor | Ramsey theory | - |
dc.subject.keywordAuthor | hypergraphs | - |
dc.subject.keywordAuthor | Berge hypergraphs | - |