Direct Observation of Atomic-Scale Gliding on Hydrophilic Surfaces
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tae Won Go | - |
dc.contributor.author | Hyunsoo Lee | - |
dc.contributor.author | Hyunhwa Lee | - |
dc.contributor.author | Hee Chan Song | - |
dc.contributor.author | Jeong Young Park | - |
dc.date.accessioned | 2022-10-14T22:07:38Z | - |
dc.date.available | 2022-10-14T22:07:38Z | - |
dc.date.created | 2022-08-26 | - |
dc.date.issued | 2022-07 | - |
dc.identifier.issn | 1948-7185 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12386 | - |
dc.description.abstract | Nanoscale friction behavior on hydrophilic surfaces (HS), influenced by a probe gliding on a confined water layer, has been investigated with friction force microscopy under various relative humidity (RH) conditions. The topographical and frictional responses of the mechanically exfoliated single-layer graphene (SLG) on native-oxide-covered silicon (SiO2/Si) and mica were both influenced by RH conditions. The ordinary phenomena at ambient conditions (i.e., higher friction on a HS than on a SLG due to different hydrophilicity), nondistinguishable height, friction of SLG with SiO2/Si at high RH (> 98%), and the superlubricating behavior of friction on a HS were observed. Furthermore, the subdomain within SLG, consisting of an ice-like water layer intercalated between SLG and SiO2/Si, showed friction enhancement. These results suggest that the abundant water molecules at the interface of the probe and a HS can make a slippery surface that overcomes capillary and viscosity effects through the gliding motion of the probe. | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | Direct Observation of Atomic-Scale Gliding on Hydrophilic Surfaces | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000830035600001 | - |
dc.identifier.scopusid | 2-s2.0-85135382632 | - |
dc.identifier.rimsid | 78681 | - |
dc.contributor.affiliatedAuthor | Tae Won Go | - |
dc.contributor.affiliatedAuthor | Hyunsoo Lee | - |
dc.contributor.affiliatedAuthor | Hyunhwa Lee | - |
dc.contributor.affiliatedAuthor | Hee Chan Song | - |
dc.contributor.affiliatedAuthor | Jeong Young Park | - |
dc.identifier.doi | 10.1021/acs.jpclett.2c01895 | - |
dc.identifier.bibliographicCitation | JOURNAL OF PHYSICAL CHEMISTRY LETTERS, v.13, no.29, pp.6612 - 6618 | - |
dc.relation.isPartOf | JOURNAL OF PHYSICAL CHEMISTRY LETTERS | - |
dc.citation.title | JOURNAL OF PHYSICAL CHEMISTRY LETTERS | - |
dc.citation.volume | 13 | - |
dc.citation.number | 29 | - |
dc.citation.startPage | 6612 | - |
dc.citation.endPage | 6618 | - |
dc.type.docType | Article; Early Access | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Atomic, Molecular & Chemical | - |
dc.subject.keywordPlus | NANOSCALE FRICTION | - |
dc.subject.keywordPlus | CAPILLARY CONDENSATION | - |
dc.subject.keywordPlus | FORCE | - |
dc.subject.keywordPlus | WATER | - |
dc.subject.keywordPlus | FILMS | - |
dc.subject.keywordPlus | CALIBRATION | - |
dc.subject.keywordPlus | ADSORPTION | - |
dc.subject.keywordPlus | MONOLAYER | - |
dc.subject.keywordPlus | GRAPHENE | - |
dc.subject.keywordPlus | SILICON | - |