Explicit transformations of certain Lambert series
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dixit, Atul | - |
dc.contributor.author | Kesarwani, Aashita | - |
dc.contributor.author | Rahul Kumar | - |
dc.date.accessioned | 2022-08-16T22:00:16Z | - |
dc.date.available | 2022-08-16T22:00:16Z | - |
dc.date.created | 2022-06-02 | - |
dc.date.issued | 2022-05 | - |
dc.identifier.issn | 2522-0144 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12232 | - |
dc.description.abstract | An exact transformation, which we call the master identity, is obtained for the first time for the series Sigma(infinity)(n=1) sigma(a)(n)e(-ny) for a is an element of C and Re(y) > 0. New modular-type transformations when a is a nonzero even integer are obtained as its special cases. The precise obstruction to modularity is explicitly seen in these transformations. These include a novel companion to Ramanujan's famous formula for sigma (2m + 1). The Wigert-Bellman identity arising from the a = 0 case of the master identity is derived too. When a is an odd integer, the well-known modular transformations of the Eisenstein series on SL2 (Z), that of the Dedekind eta function as well as Ramanujan's formula for sigma (2m + 1) are derived from the master identity. The latter identity itself is derived using Guinand's version of the VoronoT summation formula and an integral evaluation of N. S. Koshliakov involving a generalization of the modified Bessel function K-v(z). Koshliakov's integral evaluation is proved for the first time. It is then generalized using a well-known kernel of Watson to obtain an interesting two-variable generalization of the modified Bessel function. This generalization allows us to obtain a new modular-type transformation involving the sums-of-squares function r(k)(n). Some results on functions self-reciprocal in the Watson kernel are also obtained. | - |
dc.language | 영어 | - |
dc.publisher | SPRINGER INT PUBL AG | - |
dc.title | Explicit transformations of certain Lambert series | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000797974800001 | - |
dc.identifier.scopusid | 2-s2.0-85130272669 | - |
dc.identifier.rimsid | 78243 | - |
dc.contributor.affiliatedAuthor | Rahul Kumar | - |
dc.identifier.doi | 10.1007/s40687-022-00331-5 | - |
dc.identifier.bibliographicCitation | RESEARCH IN THE MATHEMATICAL SCIENCES, v.9, no.34 | - |
dc.relation.isPartOf | RESEARCH IN THE MATHEMATICAL SCIENCES | - |
dc.citation.title | RESEARCH IN THE MATHEMATICAL SCIENCES | - |
dc.citation.volume | 9 | - |
dc.citation.number | 34 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | RIEMANN ZETA-FUNCTION | - |
dc.subject.keywordPlus | DIRICHLET SERIES | - |
dc.subject.keywordPlus | BESSEL-FUNCTIONS | - |
dc.subject.keywordPlus | FORMULAS | - |
dc.subject.keywordPlus | EQUATIONS | - |
dc.subject.keywordAuthor | Bessel functions | - |
dc.subject.keywordAuthor | Watson kernel | - |
dc.subject.keywordAuthor | Modular transformations | - |
dc.subject.keywordAuthor | Ramanujan&apos | - |
dc.subject.keywordAuthor | s formula for odd zeta values | - |
dc.subject.keywordAuthor | Sums-of-squares function | - |