Enumeration of Gelfand-Cetlin type reduced words
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cho, Yunhyung | - |
dc.contributor.author | Kim, Jang Soo | - |
dc.contributor.author | Eunjeong Lee | - |
dc.date.accessioned | 2022-08-12T22:00:17Z | - |
dc.date.available | 2022-08-12T22:00:17Z | - |
dc.date.created | 2022-03-07 | - |
dc.date.issued | 2022-02 | - |
dc.identifier.issn | 1077-8926 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12216 | - |
dc.description.abstract | The combinatorics of reduced words and their commutation classes plays an important role in geometric representation theory. For a semisimple complex Lie group G, a string polytope is a convex polytope associated with each reduced word of the longest element w0 in the Weyl group of G encoding the character of a certain irreducible representation of G. In this paper, we deal with the case of type A, i.e., G = SLn+1(C). A Gelfand-Cetlin polytope is one of the most famous examples of string polytopes of type A. We provide a recursive formula enumerating reduced words of w0 such that the corresponding string polytopes are combinatorially equivalent to a Gelfand-Cetlin polytope. The recursive formula involves the number of standard Young tableaux of shifted shape. We also show that each commutation class is completely determined by a list of quantities called indices. | - |
dc.language | 영어 | - |
dc.publisher | ELECTRONIC JOURNAL OF COMBINATORICS | - |
dc.title | Enumeration of Gelfand-Cetlin type reduced words | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000754710100001 | - |
dc.identifier.scopusid | 2-s2.0-85124989874 | - |
dc.identifier.rimsid | 77816 | - |
dc.contributor.affiliatedAuthor | Eunjeong Lee | - |
dc.identifier.doi | 10.37236/10071 | - |
dc.identifier.bibliographicCitation | ELECTRONIC JOURNAL OF COMBINATORICS, v.29, no.1 | - |
dc.relation.isPartOf | ELECTRONIC JOURNAL OF COMBINATORICS | - |
dc.citation.title | ELECTRONIC JOURNAL OF COMBINATORICS | - |
dc.citation.volume | 29 | - |
dc.citation.number | 1 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | COMMUTATION CLASSES | - |
dc.subject.keywordPlus | BRAID | - |