STEM Image Analysis Based on Deep Learning: Identification of Vacancy Defects and Polymorphs of MoS2
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kihyun Lee | - |
dc.contributor.author | Jinsub Park | - |
dc.contributor.author | Soyeon Choi | - |
dc.contributor.author | Yangjin Lee | - |
dc.contributor.author | Sol Lee | - |
dc.contributor.author | Joowon Jung | - |
dc.contributor.author | Jong-Young Lee | - |
dc.contributor.author | Farman Ullah | - |
dc.contributor.author | Zeeshan Tahir | - |
dc.contributor.author | Yong Soo Kim | - |
dc.contributor.author | Gwan-Hyoung Lee | - |
dc.contributor.author | Kwanpyo Kim | - |
dc.date.accessioned | 2022-07-29T07:44:29Z | - |
dc.date.available | 2022-07-29T07:44:29Z | - |
dc.date.created | 2022-07-04 | - |
dc.date.issued | 2022-06 | - |
dc.identifier.issn | 1530-6984 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12032 | - |
dc.description.abstract | Scanning transmission electron microscopy (STEM) is an indispensable tool for atomic-resolution structural analysis for a wide range of materials. The conventional analysis of STEM images is an extensive hands-on process, which limits efficient handling of high-throughput data. Here, we apply a fully convolutional network (FCN) for identification of important structural features of two-dimensional crystals. ResUNet, a type of FCN, is utilized in identifying sulfur vacancies and polymorph types of MoS2 from atomic resolution STEM images. Efficient models are achieved based on training with simulated images in the presence of different levels of noise, aberrations, and carbon contamination. The accuracy of the FCN models toward extensive experimental STEM images is comparable to that of careful hands-on analysis. Our work provides a guideline on best practices to train a deep learning model for STEM image analysis and demonstrates FCN's application for efficient processing of a large volume of STEM data. | - |
dc.language | 영어 | - |
dc.publisher | NLM (Medline) | - |
dc.title | STEM Image Analysis Based on Deep Learning: Identification of Vacancy Defects and Polymorphs of MoS2 | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000815203800001 | - |
dc.identifier.scopusid | 2-s2.0-85132453474 | - |
dc.identifier.rimsid | 78391 | - |
dc.contributor.affiliatedAuthor | Yangjin Lee | - |
dc.contributor.affiliatedAuthor | Sol Lee | - |
dc.contributor.affiliatedAuthor | Kwanpyo Kim | - |
dc.identifier.doi | 10.1021/acs.nanolett.2c00550 | - |
dc.identifier.bibliographicCitation | Nano letters, v.22, no.12, pp.4677 - 4685 | - |
dc.relation.isPartOf | Nano letters | - |
dc.citation.title | Nano letters | - |
dc.citation.volume | 22 | - |
dc.citation.number | 12 | - |
dc.citation.startPage | 4677 | - |
dc.citation.endPage | 4685 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.subject.keywordAuthor | Deep learning | - |
dc.subject.keywordAuthor | Defect | - |
dc.subject.keywordAuthor | Molybdenum disulfide | - |
dc.subject.keywordAuthor | Polymorph | - |
dc.subject.keywordAuthor | TEM image analysis | - |