Indirect method to estimate the deadtime of a data acquisition system as a function of the data size
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gao, J. | - |
dc.contributor.author | Sasano, M. | - |
dc.contributor.author | Laszlo STUHL | - |
dc.contributor.author | Otsu, H. | - |
dc.contributor.author | Baba, H. | - |
dc.date.accessioned | 2022-07-29T07:41:52Z | - |
dc.date.available | 2022-07-29T07:41:52Z | - |
dc.date.created | 2022-07-25 | - |
dc.date.issued | 2022-07 | - |
dc.identifier.issn | 0168-9002 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12000 | - |
dc.description.abstract | © 2022 Elsevier B.V.An indirect method based on timestamp analysis is developed to estimate the deadtime of a data acquisition (DAQ) system as a function of data size (deadtime function). The performance of two types of time-to-digital converter (TDC) modules, the CAEN V1190 and the AMSC AMT-TDC, are studied by applying the proposed method to a test DAQ system built with the TDC modules. With the aid of this method, the DAQ system of the SAMURAI spectrometer at the RIKEN radioactive isotope beam factory (RIBF) is optimized. Through the optimization, the minimum deadtime of one event decreases from about 170 μs to about 45 μs. | - |
dc.language | 영어 | - |
dc.publisher | Elsevier B.V. | - |
dc.title | Indirect method to estimate the deadtime of a data acquisition system as a function of the data size | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000812232600003 | - |
dc.identifier.scopusid | 2-s2.0-85133960132 | - |
dc.identifier.rimsid | 78560 | - |
dc.contributor.affiliatedAuthor | Laszlo STUHL | - |
dc.identifier.doi | 10.1016/j.nima.2022.166823 | - |
dc.identifier.bibliographicCitation | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v.1035 | - |
dc.relation.isPartOf | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment | - |
dc.citation.title | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment | - |
dc.citation.volume | 1035 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Instruments & Instrumentation | - |
dc.relation.journalResearchArea | Nuclear Science & Technology | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Instruments & Instrumentation | - |
dc.relation.journalWebOfScienceCategory | Nuclear Science & Technology | - |
dc.relation.journalWebOfScienceCategory | Physics, Nuclear | - |
dc.relation.journalWebOfScienceCategory | Physics, Particles & Fields | - |
dc.subject.keywordAuthor | Deadtime | - |
dc.subject.keywordAuthor | Optimization | - |
dc.subject.keywordAuthor | Poisson process | - |
dc.subject.keywordAuthor | SAMURAI data acquisition system | - |
dc.subject.keywordAuthor | Time interval | - |
dc.subject.keywordAuthor | Timestamp | - |