BROWSE

Related Scientist

Kost, Jeff's photo.

Kost, Jeff
순수물리이론 연구단
more info

ITEM VIEW & DOWNLOAD

Massless preheating and electroweak vacuum metastability

Cited 0 time in webofscience Cited 0 time in scopus
37 Viewed 0 Downloaded
Title
Massless preheating and electroweak vacuum metastability
Author(s)
Jeff Kost; Chang Sub Shin; Takahiro Terada
Publication Date
2022-02-07
Journal
Physical Review D, v.105, no.4
Publisher
American Physical Society
Abstract
Published by the American Physical SocietyCurrent measurements of Standard Model parameters suggest that the electroweak vacuum is metastable. This metastability has important cosmological implications, because large fluctuations in the Higgs field could trigger vacuum decay in the early Universe. For the false vacuum to survive, interactions which stabilize the Higgs during inflation—e.g., inflaton-Higgs interactions or nonminimal couplings to gravity—are typically necessary. However, the postinflationary preheating dynamics of these same interactions could also trigger vacuum decay, thereby recreating the problem we sought to avoid. This dynamics is often assumed catastrophic for models exhibiting scale invariance, since these generically allow for unimpeded growth of fluctuations. In this paper, we examine the dynamics of such “massless preheating” scenarios and show that the competing threats to metastability can nonetheless be balanced to ensure viability. We find that fully accounting for both the backreaction from particle production and the effects of perturbative decays reveals a large number of disjoint “islands of (meta)stability” over the parameter space of couplings. Ultimately, the interplay among Higgs-stabilizing interactions plays a significant role, leading to a sequence of dynamical phases that effectively extend the metastable regions to large Higgs-curvature couplings.
URI
https://pr.ibs.re.kr/handle/8788114/11179
DOI
10.1103/PhysRevD.105.043508
ISSN
2470-0010
Appears in Collections:
Center for Fundamental Theory(순수물리이론 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse