BROWSE

Related Scientist

cmsd's photo.

cmsd
분자분광학및동력학연구단
more info

ITEM VIEW & DOWNLOAD

Machine Learning Approach for Describing Water OH Stretch Vibrations

DC Field Value Language
dc.contributor.authorKijeong Kwac-
dc.contributor.authorHolly Freedman-
dc.contributor.authorMinhaeng Cho-
dc.date.accessioned2021-11-11T07:30:11Z-
dc.date.available2021-11-11T07:30:11Z-
dc.date.created2021-10-05-
dc.date.issued2021-10-12-
dc.identifier.issn1549-9618-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/10647-
dc.description.abstract© 2021 American Chemical Society.A machine learning approach employing neural networks is developed to calculate the vibrational frequency shifts and transition dipole moments of the symmetric and antisymmetric OH stretch vibrations of a water molecule surrounded by water molecules. We employed the atom-centered symmetry functions (ACSFs), polynomial functions, and Gaussian-type orbital-based density vectors as descriptor functions and compared their performances in predicting vibrational frequency shifts using the trained neural networks. The ACSFs perform best in modeling the frequency shifts of the OH stretch vibration of water among the types of descriptor functions considered in this paper. However, the differences in performance among these three descriptors are not significant. We also tried a feature selection method called CUR matrix decomposition to assess the importance and leverage of the individual functions in the set of selected descriptor functions. We found that a significant number of those functions included in the set of descriptor functions give redundant information in describing the configuration of the water system. We here show that the predicted vibrational frequency shifts by trained neural networks successfully describe the solvent-solute interaction-induced fluctuations of OH stretch frequencies.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleMachine Learning Approach for Describing Water OH Stretch Vibrations-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000708673100028-
dc.identifier.scopusid2-s2.0-85115660644-
dc.identifier.rimsid76495-
dc.contributor.affiliatedAuthorKijeong Kwac-
dc.contributor.affiliatedAuthorHolly Freedman-
dc.contributor.affiliatedAuthorMinhaeng Cho-
dc.identifier.doi10.1021/acs.jctc.1c00540-
dc.identifier.bibliographicCitationJournal of Chemical Theory and Computation, v.17, no.10, pp.6353 - 6365-
dc.relation.isPartOfJournal of Chemical Theory and Computation-
dc.citation.titleJournal of Chemical Theory and Computation-
dc.citation.volume17-
dc.citation.number10-
dc.citation.startPage6353-
dc.citation.endPage6365-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.subject.keywordPlusPOTENTIAL-ENERGY SURFACE-
dc.subject.keywordPlusHYDROGEN-BOND DYNAMICS-
dc.subject.keywordPlusLIQUID WATER-
dc.subject.keywordPlusINFRARED-SPECTROSCOPY-
dc.subject.keywordPlusDIPOLE-MOMENT-
dc.subject.keywordPlusSPECTRA-
dc.subject.keywordPlusNETWORK-
dc.subject.keywordPlusD2O-
dc.subject.keywordPlusINTENSITIES-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordAuthorPOTENTIAL-ENERGY SURFACEHYDROGEN-BOND DYNAMICSLIQUID WATERINFRARED-SPECTROSCOPYDIPOLE-MOMENTSPECTRANETWORKD2OINTENSITIESABSORPTION-
Appears in Collections:
Center for Molecular Spectroscopy and Dynamics(분자 분광학 및 동력학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse