G-birational rigidity of the projective plane
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dmitrijs Sakovics | - |
dc.date.accessioned | 2021-09-06T01:30:02Z | - |
dc.date.accessioned | 2021-09-06T01:30:02Z | - |
dc.date.available | 2021-09-06T01:30:02Z | - |
dc.date.available | 2021-09-06T01:30:02Z | - |
dc.date.created | 2021-05-27 | - |
dc.date.issued | 2019-09 | - |
dc.identifier.issn | 2199-675X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/10192 | - |
dc.description.abstract | Given a surface S and a finite group G of automorphisms of S, consider the birational maps S⤏ S′ that commute with the action of G. This leads to the notion of a G-minimal variety. A natural question arises: for a fixed group G, is there a birational G-map between two different G-minimal surfaces? If no such map exists, the surface is said to be G-birationally rigid. This paper determines the G-rigidity of the projective plane for every finite subgroup G⊂ PGL 3(C). © 2018, Springer International Publishing AG, part of Springer Nature. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | Springer International Publishing AG | - |
dc.title | G-birational rigidity of the projective plane | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.scopusid | 2-s2.0-85053004049 | - |
dc.identifier.rimsid | 75752 | - |
dc.contributor.affiliatedAuthor | Dmitrijs Sakovics | - |
dc.identifier.doi | 10.1007/s40879-018-0261-x | - |
dc.identifier.bibliographicCitation | European Journal of Mathematics, v.5, no.3, pp.1090 - 1105 | - |
dc.citation.title | European Journal of Mathematics | - |
dc.citation.volume | 5 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 1090 | - |
dc.citation.endPage | 1105 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | Birational rigidity | - |
dc.subject.keywordAuthor | Cremona group | - |
dc.subject.keywordAuthor | Minimal surfaces | - |