Saturation problems in the Ramsey theory of graphs, posets and point sets
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Damásdi, Gábor | - |
dc.contributor.author | Keszegh, Balázs | - |
dc.contributor.author | Malec, David | - |
dc.contributor.author | Casey Tompkins | - |
dc.contributor.author | Wang, Zhiyu | - |
dc.contributor.author | Zamora, Oscar | - |
dc.date.accessioned | 2021-08-05T02:30:04Z | - |
dc.date.accessioned | 2021-08-05T02:30:04Z | - |
dc.date.available | 2021-08-05T02:30:04Z | - |
dc.date.available | 2021-08-05T02:30:04Z | - |
dc.date.created | 2021-03-24 | - |
dc.date.issued | 2021-06 | - |
dc.identifier.issn | 0195-6698 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/10033 | - |
dc.description.abstract | © 2021 Elsevier Ltd. All rights reserved. In 1964, Erdos, Hajnal and Moon introduced a saturation version of Tur & aacute;n's classical theorem in extremal graph theory. In particular, they determined the minimum number of edges in a Kr-free, n-vertex graph with the property that the addition of any further edge yields a copy of Kr. We consider analogues of this problem in other settings. We prove a saturation version of the Erdos-Szekeres theorem about monotone subsequences and saturation versions of some Ramsey-type theorems on graphs and Dilworth-type theorems on posets. We also consider semisaturation problems, wherein we allow the family to have the forbidden configuration, but insist that any addition to the family yields a new copy of the forbidden configuration. In this setting, we prove a semisaturation version of the Erdos-Szekeres theorem on convex k-gons, as well as multiple semisaturation theorems for sequences and posets. (c) 2021 Elsevier Ltd. All rights reserved. | - |
dc.language | 영어 | - |
dc.publisher | ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD | - |
dc.title | Saturation problems in the Ramsey theory of graphs, posets and point sets | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000652025600020 | - |
dc.identifier.scopusid | 2-s2.0-85101595949 | - |
dc.identifier.rimsid | 75129 | - |
dc.contributor.affiliatedAuthor | Casey Tompkins | - |
dc.identifier.doi | 10.1016/j.ejc.2021.103321 | - |
dc.identifier.bibliographicCitation | EUROPEAN JOURNAL OF COMBINATORICS, v.95 | - |
dc.relation.isPartOf | EUROPEAN JOURNAL OF COMBINATORICS | - |
dc.citation.title | EUROPEAN JOURNAL OF COMBINATORICS | - |
dc.citation.volume | 95 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |