Long path and cycle decompositions of even hypercubes
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Axenovich, Maria | - |
dc.contributor.author | Offner, David | - |
dc.contributor.author | Casey Tompkins | - |
dc.date.accessioned | 2021-08-05T01:50:01Z | - |
dc.date.accessioned | 2021-08-05T01:50:01Z | - |
dc.date.available | 2021-08-05T01:50:01Z | - |
dc.date.available | 2021-08-05T01:50:01Z | - |
dc.date.created | 2021-03-24 | - |
dc.date.issued | 2021-06 | - |
dc.identifier.issn | 0195-6698 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/10031 | - |
dc.description.abstract | ©2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). We consider edge decompositions of the n-dimensional hypercube Q(n) into isomorphic copies of a given graph H. While a number of results are known about decomposing Q n into graphs from various classes, the simplest cases of paths and cycles of a given length are far from being understood. A conjecture of Erde asserts that if n is even, l < 2(n) and l divides the number of edges of Q(n), then the path of length l decomposes Q(n). Tapadia et al. proved that any path of length 2(m)n, where 2(m) < n, satisfying these conditions decomposes Q. Here, we make progress toward resolving Erde's conjecture by showing that cycles of certain lengths up to 2(n+1) /n decompose Q(n) As a consequence, we show that Q n can be decomposed into copies of any path of length at most 2(n)/n dividing the number of edges of Q(n), thereby settling Erde's conjecture up to a linear factor. (C) 2021 The Author(s). Published by Elsevier Ltd. | - |
dc.language | 영어 | - |
dc.publisher | ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD | - |
dc.title | Long path and cycle decompositions of even hypercubes | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000652025600004 | - |
dc.identifier.scopusid | 2-s2.0-85101866146 | - |
dc.identifier.rimsid | 75127 | - |
dc.contributor.affiliatedAuthor | Casey Tompkins | - |
dc.identifier.doi | 10.1016/j.ejc.2021.103320 | - |
dc.identifier.bibliographicCitation | EUROPEAN JOURNAL OF COMBINATORICS, v.95 | - |
dc.relation.isPartOf | EUROPEAN JOURNAL OF COMBINATORICS | - |
dc.citation.title | EUROPEAN JOURNAL OF COMBINATORICS | - |
dc.citation.volume | 95 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |