A comprehensive assessment of empirical potentials for carbon materials
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheng Qian | - |
dc.contributor.author | Ben McLean | - |
dc.contributor.author | Daniel Hedman | - |
dc.contributor.author | Feng Ding | - |
dc.date.accessioned | 2021-08-03T01:30:03Z | - |
dc.date.accessioned | 2021-08-03T01:30:03Z | - |
dc.date.available | 2021-08-03T01:30:03Z | - |
dc.date.available | 2021-08-03T01:30:03Z | - |
dc.date.created | 2021-07-07 | - |
dc.date.issued | 2021-06-01 | - |
dc.identifier.issn | 2166-532X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/10015 | - |
dc.description.abstract | © 2021 Author(s).Carbon materials and their unique properties have been extensively studied by molecular dynamics, thanks to the wide range of available carbon bond order potentials (CBOPs). Recently, with the increase in popularity of machine learning (ML), potentials such as Gaussian approximation potential (GAP), trained using ML, can accurately predict results for carbon. However, selecting the right potential is crucial as each performs differently for different carbon allotropes, and these differences can lead to inaccurate results. This work compares the widely used CBOPs and the GAP-20 ML potential with density functional theory results, including lattice constants, cohesive energies, defect formation energies, van der Waals interactions, thermal stabilities, and mechanical properties for different carbon allotropes. We find that GAP-20 can more accurately predict the structure, defect properties, and formation energies for a variety of crystalline phase carbon compared to CBOPs. Importantly, GAP-20 can simulate the thermal stability of C60 and the fracture of carbon nanotubes and graphene accurately, where CBOPs struggle. However, similar to CBOPs, GAP-20 is unable to accurately account for van der Waals interactions. Despite this, we find that GAP-20 outperforms all CBOPs assessed here and is at present the most suitable potential for studying thermal and mechanical properties for pristine and defective carbon. | - |
dc.language | 영어 | - |
dc.publisher | American Institute of Physics Inc. | - |
dc.title | A comprehensive assessment of empirical potentials for carbon materials | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000721052300003 | - |
dc.identifier.scopusid | 2-s2.0-85107375534 | - |
dc.identifier.rimsid | 75962 | - |
dc.contributor.affiliatedAuthor | Cheng Qian | - |
dc.contributor.affiliatedAuthor | Ben McLean | - |
dc.contributor.affiliatedAuthor | Daniel Hedman | - |
dc.contributor.affiliatedAuthor | Feng Ding | - |
dc.identifier.doi | 10.1063/5.0052870 | - |
dc.identifier.bibliographicCitation | APL Materials, v.9, no.6 | - |
dc.relation.isPartOf | APL Materials | - |
dc.citation.title | APL Materials | - |
dc.citation.volume | 9 | - |
dc.citation.number | 6 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.subject.keywordPlus | CHEMICAL-VAPOR-DEPOSITION | - |
dc.subject.keywordPlus | MOLECULAR-DYNAMICS | - |
dc.subject.keywordPlus | CVD GRAPHENE | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordPlus | STABILITY | - |
dc.subject.keywordPlus | STRENGTH | - |
dc.subject.keywordPlus | DEFECTS | - |
dc.subject.keywordPlus | HYDROCARBONS | - |
dc.subject.keywordPlus | MONOLAYER | - |
dc.subject.keywordPlus | CONSTANTS | - |
dc.subject.keywordAuthor | density functional theory | - |
dc.subject.keywordAuthor | graphene | - |
dc.subject.keywordAuthor | 2D materials chemistry | - |
dc.subject.keywordAuthor | force field | - |
dc.subject.keywordAuthor | diamond | - |
dc.subject.keywordAuthor | molecular dynamics | - |
dc.subject.keywordAuthor | machine learning | - |
dc.subject.keywordAuthor | fullerenes | - |
dc.subject.keywordAuthor | nanotubes | - |