-
Publication Date2018-03
Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity
Hui Kwon Kim; Seonwoo Min; Myungjae Song, et al
NATURE BIOTECHNOLOGY, v.36, no.3, pp.239 - +
-
Publication Date2024-03
Deep learning models to predict the editing efficiencies and outcomes of diverse base editors
Nahye Kim; Sungchul Choi; Sungjae Kim, et al
Nature Biotechnology, v.42, pp.484 - 497
-
Publication Date2021-09-23
Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain
Myungjae Song; Jung Min Lim; Seonwoo Min, et al
Nature Communications, v.12, no.1, pp.1 - 8
-
Publication Date2020-01
High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells
Hui Kwon Kim; Sungtae Lee; Younggwang Kim, et al
NATURE BIOMEDICAL ENGINEERING, v.4, no.1, pp.111 - 124
-
Publication Date2023-07
Massively parallel evaluation and computational prediction of the activities and specificities of 17 small Cas9s
Sang-Yeon Seo; Seonwoo Min; Sungtae Lee, et al
Nature Methods, v.20, no.7, pp.999 - 1009
-
Publication Date2020-11
Prediction of the sequence-specific cleavage activity of Cas9 variants
Nahye Kim; Hui Kwon Kim; Sungtae Lee, et al
NATURE BIOTECHNOLOGY, v.38, pp.1328 - 1336
-
Publication Date2020-09
Sequence-specific prediction of the efficiencies of adenine and cytosine base editors
Myungjae Song; Hui Kwon Kim; Sungtae Lee, et al
Nature Biotechnology, v.38, no.9, pp.1037 - 1043
-
Publication Date2023-08
Sniper2L is a high-fidelity Cas9 variant with high activity
Young-hoon Kim; Nahye Kim; Ikenna Okafor, et al
Nature Chemical Biology, v.19, no.8, pp.972 - 980
-
Publication Date2019-11
SpCas9 activity prediction by DeepSpCas9, a deep learning–based model with high generalization performance
Hui Kwon Kim; Younggwang Kim; Sungtae Lee, et al
SCIENCE ADVANCES, v.5, no.11, pp.eaax9249