Distinguishing a Mott Insulator from a Trivial Insulator with Atomic Adsorbates
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jinwon Lee | - |
dc.contributor.author | Kyung-Hwan Jin | - |
dc.contributor.author | Han Woong Yeom | - |
dc.date.accessioned | 2021-07-23T00:30:02Z | - |
dc.date.accessioned | 2021-07-23T00:30:02Z | - |
dc.date.available | 2021-07-23T00:30:02Z | - |
dc.date.available | 2021-07-23T00:30:02Z | - |
dc.date.created | 2021-07-07 | - |
dc.date.issued | 2021-05 | - |
dc.identifier.issn | 0031-9007 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/9996 | - |
dc.description.abstract | © 2021 American Physical Society.In an electronic system with various interactions intertwined, revealing the origin of its many-body ground state is challenging and a direct experimental way to verify the correlated nature of an insulator has been lacking. Here we demonstrate a way to unambiguously distinguish a paradigmatic correlated insulator, a Mott insulator, from a trivial band insulator based on their distinct chemical behavior for a surface adsorbate using 1T-TaS2, which has been debated between a spin-frustrated Mott insulator or a spin-singlet trivial insulator. We start from the observation of different sizes of spectral gaps on different surface terminations and show that potassium adatoms on these two surface layers behave in totally different ways. This can be straightforwardly understood from distinct properties of Mott and band insulators due to the fundamental difference of the half- and full-filled orbitals involved, respectively. This work not only solves an outstanding problem in this particularly interesting material but also provides a simple touchstone to identify the correlated ground state of electrons experimentally. | - |
dc.language | 영어 | - |
dc.publisher | American Physical Society | - |
dc.title | Distinguishing a Mott Insulator from a Trivial Insulator with Atomic Adsorbates | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000652838800003 | - |
dc.identifier.scopusid | 2-s2.0-85106391246 | - |
dc.identifier.rimsid | 76020 | - |
dc.contributor.affiliatedAuthor | Jinwon Lee | - |
dc.contributor.affiliatedAuthor | Kyung-Hwan Jin | - |
dc.contributor.affiliatedAuthor | Han Woong Yeom | - |
dc.identifier.doi | 10.1103/PhysRevLett.126.196405 | - |
dc.identifier.bibliographicCitation | Physical Review Letters, v.126, no.19 | - |
dc.relation.isPartOf | Physical Review Letters | - |
dc.citation.title | Physical Review Letters | - |
dc.citation.volume | 126 | - |
dc.citation.number | 19 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Physics, Multidisciplinary | - |
dc.subject.keywordPlus | CHARGE-DENSITY WAVES | - |
dc.subject.keywordPlus | SCANNING TUNNELING SPECTROSCOPY | - |
dc.subject.keywordPlus | SUPERCONDUCTIVITY | - |
dc.subject.keywordPlus | STATE | - |
dc.subject.keywordPlus | PHASE | - |
dc.subject.keywordPlus | MICROSCOPY | - |
dc.subject.keywordPlus | 1T-TAS2 | - |
dc.subject.keywordPlus | ORIGIN | - |