BROWSE

Related Scientist

cnir's photo.

cnir
뇌과학이미징연구단
more info

ITEM VIEW & DOWNLOAD

Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach

DC Field Value Language
dc.contributor.authorKim, Jun Pyo-
dc.contributor.authorKim, Jonghoon-
dc.contributor.authorJang, Hyemin-
dc.contributor.authorKim, Jaeho-
dc.contributor.authorKang, Sung Hoon-
dc.contributor.authorKim, Ji Sun-
dc.contributor.authorLee, Jongmin-
dc.contributor.authorNa, Duk L.-
dc.contributor.authorKim, Hee Jin-
dc.contributor.authorSeo, Sang Won-
dc.contributor.authorHyunjin Park-
dc.date.accessioned2021-04-29T01:50:01Z-
dc.date.accessioned2021-04-29T01:50:01Z-
dc.date.available2021-04-29T01:50:01Z-
dc.date.available2021-04-29T01:50:01Z-
dc.date.created2021-04-26-
dc.date.issued2021-03-26-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/9558-
dc.description.abstract© 2021, The Author(s).Predicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radiomics features composed of histogram and texture features. These features were used alone or in combination with baseline non-imaging predictors such as age, sex, and ApoE genotype to predict amyloid positivity. We used a regularized regression method for feature selection and prediction. The performance of the baseline non-imaging model was at a fair level (AUC = 0.71). Among single MR-sequence models, T1 and T2 FLAIR radiomics models also showed fair performances (AUC for test = 0.71–0.74, AUC for validation = 0.68–0.70) in predicting amyloid positivity. When T1 and T2 FLAIR radiomics features were combined, the AUC for test was 0.75 and AUC for validation was 0.72 (p vs. baseline model < 0.001). The model performed best when baseline features were combined with a T1 and T2 FLAIR radiomics model (AUC for test = 0.79, AUC for validation = 0.76), which was significantly better than those of the baseline model (p < 0.001) and the T1 + T2 FLAIR radiomics model (p < 0.001). In conclusion, radiomics features showed predictive value for amyloid positivity. It can be used in combination with other predictive features and possibly improve the prediction performance.-
dc.language영어-
dc.publisherNature Research-
dc.titlePredicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000635229700006-
dc.identifier.scopusid2-s2.0-85103110863-
dc.identifier.rimsid75454-
dc.contributor.affiliatedAuthorHyunjin Park-
dc.identifier.doi10.1038/s41598-021-86114-4-
dc.identifier.bibliographicCitationScientific Reports, v.11, no.1-
dc.relation.isPartOfScientific Reports-
dc.citation.titleScientific Reports-
dc.citation.volume11-
dc.citation.number1-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
Appears in Collections:
Center for Neuroscience Imaging Research (뇌과학 이미징 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse