Self-passivation leads to semiconducting edges of black phosphorene
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li Ping Ding | - |
dc.contributor.author | Feng Ding | - |
dc.date.accessioned | 2021-04-14T04:50:02Z | - |
dc.date.accessioned | 2021-04-14T04:50:02Z | - |
dc.date.available | 2021-04-14T04:50:02Z | - |
dc.date.available | 2021-04-14T04:50:02Z | - |
dc.date.created | 2021-03-09 | - |
dc.date.issued | 2021-02-01 | - |
dc.identifier.issn | 2055-6756 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/9462 | - |
dc.description.abstract | The edges of black phosphorene (BP) have been extensively explored. The previous experimental observations that all the BP edges are semiconducting implies that the as-cut edges of BP tend to be reconstructed. Here we present a global structural search of three typical BP edges, namely armchair, zigzag and zigzag-1 edges. It is found that all the three pristine edges are metastable, and all of them can be quickly self-passivated by (i) forming P=P double bonds (one r and one p bond), (ii) reconstructing new polygonal rings will all P atoms bonded with three sp3 bonds or (iii) forming a special P(2)-P(4) configuration with a two-coordinated P atom accommodating two lone pair electrons and one four-coordinated P atom without lone pair electrons. Highly different from the pristine edges, all these highly stable reconstructed edges are semiconducting. This study showed that the reconstruction of the edges of a 2D material, just like the surfaces of a 3D crystal, must be considered for both fundamental studies and practical applications. Besides BP, this study also sheds light on the structures and properties of the edges of many other 2D materials. | - |
dc.language | 영어 | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | Self-passivation leads to semiconducting edges of black phosphorene | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000617006200012 | - |
dc.identifier.scopusid | 2-s2.0-85101167711 | - |
dc.identifier.rimsid | 74915 | - |
dc.contributor.affiliatedAuthor | Li Ping Ding | - |
dc.contributor.affiliatedAuthor | Feng Ding | - |
dc.identifier.doi | 10.1039/d0nh00506a | - |
dc.identifier.bibliographicCitation | NANOSCALE HORIZONS, v.6, no.2, pp.148 - 155 | - |
dc.relation.isPartOf | NANOSCALE HORIZONS | - |
dc.citation.title | NANOSCALE HORIZONS | - |
dc.citation.volume | 6 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 148 | - |
dc.citation.endPage | 155 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | ELECTRONIC-PROPERTIES | - |
dc.subject.keywordPlus | NANORIBBONS | - |
dc.subject.keywordPlus | TRANSITION | - |
dc.subject.keywordPlus | SURFACE | - |
dc.subject.keywordPlus | RECONSTRUCTION | - |
dc.subject.keywordPlus | ZIGZAG | - |
dc.subject.keywordPlus | STATE | - |