BROWSE

Related Scientist

kim,homin's photo.

kim,homin
단백질커뮤니케이션그룹
more info

ITEM VIEW & DOWNLOAD

Metal-Mediated Protein Assembly Using a Genetically Incorporated Metal-Chelating Amino Acid

DC Field Value Language
dc.contributor.authorKim, Sanggil-
dc.contributor.authorYun, Jeongwon-
dc.contributor.authorYoo, Hyunjung-
dc.contributor.authorKim, Sooin-
dc.contributor.authorHo Min Kim-
dc.contributor.authorLee, Hyun Soo-
dc.date.accessioned2021-01-25T08:50:01Z-
dc.date.accessioned2021-01-25T08:50:01Z-
dc.date.available2021-01-25T08:50:01Z-
dc.date.available2021-01-25T08:50:01Z-
dc.date.created2021-01-22-
dc.date.issued2020-12-
dc.identifier.issn1525-7797-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/9098-
dc.description.abstractMany natural proteins function in oligomeric forms, which are critical for their sophisticated functions. The construction of protein assemblies has great potential for biosensors, enzyme catalysis, and biomedical applications. In designing protein assemblies, a critical process is to create protein-protein interaction (PPI) networks at defined sites of a target protein. Although a few methods are available for this purpose, most of them are dependent on existing PPIs of natural proteins to some extent. In this report, a metal-chelating amino acid, 2,2 '-bipyridylalanine (BPA), was genetically introduced into defined sites of a monomeric protein and used to form protein oligomers. Depending on the number of BPAs introduced into the protein and the species of metal ions (Ni2+ and Cu2+), dimers or oligomers with different oligomerization patterns were formed by complexation with a metal ion. Oligomer sizes could also be controlled by incorporating two BPAs at different locations with varied angles to the center of the protein. When three BPAs were introduced, the monomeric protein formed a large complex with Ni2+. In addition, when Cu2+ was used for complex formation with the protein containing two BPAs, a linear complex was formed. The method proposed in this report is technically simple and generally applicable to various proteins with interesting functions. Therefore, this method would be useful for the design and construction of functional protein assemblies.-
dc.description.uri1-
dc.language영어-
dc.publisherAMER CHEMICAL SOC-
dc.titleMetal-Mediated Protein Assembly Using a Genetically Incorporated Metal-Chelating Amino Acid-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000599993400034-
dc.identifier.scopusid2-s2.0-85097759205-
dc.identifier.rimsid74324-
dc.contributor.affiliatedAuthorHo Min Kim-
dc.identifier.doi10.1021/acs.biomac.0c01194-
dc.identifier.bibliographicCitationBIOMACROMOLECULES, v.21, no.12, pp.5021 - 5028-
dc.citation.titleBIOMACROMOLECULES-
dc.citation.volume21-
dc.citation.number12-
dc.citation.startPage5021-
dc.citation.endPage5028-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusCOMPUTATIONAL DESIGN-
dc.subject.keywordPlusCOORDINATION-
dc.subject.keywordAuthorcomputational design-
dc.subject.keywordAuthorcoordination-
Appears in Collections:
Pioneer Research Center for Biomolecular and Cellular Structure(바이오분자 및 세포구조 연구단) > Protein Communication Group(단백질 커뮤니케이션 그룹) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse