Deep learning of chaos classification
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Woo Seok Lee | - |
dc.contributor.author | Sergej Flach | - |
dc.date.accessioned | 2021-01-12T02:30:02Z | - |
dc.date.accessioned | 2021-01-12T02:30:02Z | - |
dc.date.available | 2021-01-12T02:30:02Z | - |
dc.date.available | 2021-01-12T02:30:02Z | - |
dc.date.created | 2020-11-10 | - |
dc.date.issued | 2020-12 | - |
dc.identifier.issn | 2632-2153 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/9034 | - |
dc.description.abstract | © 2020 The Author(s). Published by IOP Publishing Ltd. We train an artificial neural network which distinguishes chaotic and regular dynamics of the two-dimensional Chirikov standard map. We use finite length trajectories and compare the performance with traditional numerical methods which need to evaluate the Lyapunov exponent (LE). The neural network has superior performance for short periods with length down to 10 Lyapunov times on which the traditional LE computation is far from converging. We show the robustness of the neural network to varying control parameters, in particular we train with one set of control parameters, and successfully test in a complementary set. Furthermore, we use the neural network to successfully test the dynamics of discrete maps in different dimensions, e.g. the one-dimensional logistic map and a three-dimensional discrete version of the Lorenz system. Our results demonstrate that a convolutional neural network can be used as an excellent chaos indicator. | - |
dc.language | 영어 | - |
dc.publisher | IOP Publishing | - |
dc.title | Deep learning of chaos classification | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000754876300021 | - |
dc.identifier.scopusid | 2-s2.0-85123839465 | - |
dc.identifier.rimsid | 73628 | - |
dc.contributor.affiliatedAuthor | Woo Seok Lee | - |
dc.contributor.affiliatedAuthor | Sergej Flach | - |
dc.identifier.doi | 10.1088/2632-2153/abb6d3 | - |
dc.identifier.bibliographicCitation | Machine Learning: Science and Technology, v.1, no.4 | - |
dc.relation.isPartOf | Machine Learning: Science and Technology | - |
dc.citation.title | Machine Learning: Science and Technology | - |
dc.citation.volume | 1 | - |
dc.citation.number | 4 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |