Symplectic Topology and Floer Homology: Volume 2, Floer Homology and its Applications
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Oh , Yong Geun | - |
dc.date.accessioned | 2020-12-16T09:25:50Z | - |
dc.date.accessioned | 2020-12-16T09:25:50Z | - |
dc.date.available | 2020-12-16T09:25:50Z | - |
dc.date.available | 2020-12-16T09:25:50Z | - |
dc.date.issued | 2015-08 | - |
dc.identifier.isbn | 9781107109674 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7435 | - |
dc.format.extent | 1-472 | - |
dc.language | ENG | - |
dc.publisher | Cambridge University Press | - |
dc.title | Symplectic Topology and Floer Homology: Volume 2, Floer Homology and its Applications | - |
dc.type | Book | - |
dc.type.rims | BOOK | - |
dc.identifier.rimsid | 263 | - |
dc.description.tableOfContents | Preface Part III. Lagrangian Intersection Floer Homology: 12. Floer homology on cotangent bundles 13. Off-shell framework of Floer complex with bubbles 14. On-shell analysis of Floer moduli spaces 15. Off-shell analysis of the Floer moduli space 16. Floer homology of monotone Lagrangian submanifolds 17. Applications to symplectic topology Part IV. Hamiltonian Fixed Point Floer Homology: 18. Action functional and Conley–Zehnder index 19. Hamiltonian Floer homology 20. Pants product and quantum cohomology 21. Spectral invariants: construction 22. Spectral invariants: applications Appendix A. The Weitzenböck formula for vector valued forms Appendix B. Three-interval method of exponential estimates Appendix C. Maslov index, Conley–Zehnder index and index formula References Index. | - |
dc.description.tableOfContents | Preface Part III. Lagrangian Intersection Floer Homology: 12. Floer homology on cotangent bundles 13. Off-shell framework of Floer complex with bubbles 14. On-shell analysis of Floer moduli spaces 15. Off-shell analysis of the Floer moduli space 16. Floer homology of monotone Lagrangian submanifolds 17. Applications to symplectic topology Part IV. Hamiltonian Fixed Point Floer Homology: 18. Action functional and Conley–Zehnder index 19. Hamiltonian Floer homology 20. Pants product and quantum cohomology 21. Spectral invariants: construction 22. Spectral invariants: applications Appendix A. The Weitzenböck formula for vector valued forms Appendix B. Three-interval method of exponential estimates Appendix C. Maslov index, Conley–Zehnder index and index formula References Index. | - |
dc.contributor.affiliatedAuthor | Oh , Yong Geun | - |
dc.identifier.bibliographicCitation | New Mathematical Monographs, 29, Cambridge University Press, 1-472 p | - |
dc.relation.isPartOfSeries | New Mathematical Monographs, 29 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 472 | - |
dc.type.docType | 저서 | - |