BROWSE

Related Scientist

xiao,wang's photo.

xiao,wang
다차원탄소재료연구단
more info

ITEM VIEW & DOWNLOAD

Nanoassembly Growth Model for Subdomain and Grain Boundary Formation in 1T′ Layered ReS2

DC Field Value Language
dc.contributor.authorLi X.-
dc.contributor.authorXiao Wang-
dc.contributor.authorHong J.-
dc.contributor.authorLiu D.-
dc.contributor.authorFeng Q.-
dc.contributor.authorLei Z.-
dc.contributor.authorLiu K.-
dc.contributor.authorFeng Ding-
dc.contributor.authorXu H.-
dc.date.available2020-01-31T00:51:50Z-
dc.date.created2019-11-18-
dc.date.issued2019-12-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/6756-
dc.description.abstract© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGrain boundaries (GBs) significantly affect the electrical, optical, magnetic, and mechanical properties of 2D materials. An anisotropic 2D material like ReS2 provides unprecedented opportunities to explore novel GB properties, since the reduced lattice symmetry offers greater degrees of freedom to build new GB structures. Here the atomic structure and formation mechanism of unusual multidomain and diverse GB structures in the vapor phase synthesized ReS2 atomic layers are reported. Using high-resolution electron microscopy, two major categories of GBs are observed in each ReS2 domain, namely, the joint GB including three structures, and the GBs formed from a reconstruction of Re4-chains including seven different structures. Based on the experimental observations, a novel “nanoassembly growth model” is proposed to elucidate the growth process of ReS2, where three types of Re4-chain reconstruction give rise to a multidomain structure. Moreover, it is shown that by controlling the thermodynamics of the growth process, the structure and density of GB in the ReS2 domain can be tailored. First-principles calculations point to interesting new properties resulting from such GBs, such as a new electron state or ferromagnetism, which are highly sought after in the construction of novel 2D devices-
dc.description.uri1-
dc.language영어-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectanisotropy-
dc.subjectgrain boundary-
dc.subjectrhenium disulfide-
dc.subjectsubdomain-
dc.subjectsuperlattices-
dc.titleNanoassembly Growth Model for Subdomain and Grain Boundary Formation in 1T′ Layered ReS2-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000488169600001-
dc.identifier.scopusid2-s2.0-85073957066-
dc.identifier.rimsid70441-
dc.contributor.affiliatedAuthorXiao Wang-
dc.contributor.affiliatedAuthorFeng Ding-
dc.identifier.doi10.1002/adfm.201906385-
dc.identifier.bibliographicCitationADVANCED FUNCTIONAL MATERIALS, v.29, no.49, pp.1906385-
dc.citation.titleADVANCED FUNCTIONAL MATERIALS-
dc.citation.volume29-
dc.citation.number49-
dc.citation.startPage1906385-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthoranisotropy-
dc.subject.keywordAuthorgrain boundary-
dc.subject.keywordAuthorrhenium disulfide-
dc.subject.keywordAuthorsubdomain-
dc.subject.keywordAuthorsuperlattices-
Appears in Collections:
Center for Multidimensional Carbon Materials(다차원 탄소재료 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
11 Li_et_al-2019-Advanced_Functional_Materials.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse