BROWSE

Related Scientist

zhu,liyan's photo.

zhu,liyan
다차원탄소재료연구단
more info

ITEM VIEW & DOWNLOAD

The strength of mechanically-exfoliated monolayer graphene deformed on a rigid polymer substrate

DC Field Value Language
dc.contributor.authorZhao, X-
dc.contributor.authorPapageorgiou, DG-
dc.contributor.authorLiyan Zhu-
dc.contributor.authorFeng Ding-
dc.contributor.authorYoung, RJ-
dc.date.available2019-11-13T07:33:12Z-
dc.date.created2019-10-21-
dc.date.issued2019-08-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/6454-
dc.description.abstractThe deformation and fracture behaviour of one-atom-thick mechanically exfoliated graphene has been studied in detail. Monolayer graphene flakes with different lengths, widths and shapes were successfully prepared by mechanical exfoliation and deposited onto poly(methyl methacrylate) (PMMA) beams. The fracture behaviour of the monolayer graphene was followed by deforming the PMMA beams. Through in situ Raman mapping at different strain levels, the distributions of strain over the graphene flakes were determined from the shift of the graphene Raman 2D band. The failure mechanisms of the exfoliated graphene were either by flake fracture or failure of the graphene/polymer interface. The fracture of the flakes was observed from the formation of cracks identified from the appearance of lines of zero strain in the strain contour maps. It was found that the strength of the monolayer graphene flakes decreased with increasing flake width. The strength dropped to less than similar to 10 GPa for large flakes, thought to be due to the presence of defects. It is shown that a pair of topological defects in monolayer graphene will form a pseudo crack and the effect of such defects upon the strength of monolayer graphene has been modelled using molecular mechanical simulations. © The Royal Society of Chemistry 2019-
dc.description.uri1-
dc.language영어-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleThe strength of mechanically-exfoliated monolayer graphene deformed on a rigid polymer substrate-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000484234700030-
dc.identifier.scopusid2-s2.0-85070848422-
dc.identifier.rimsid70356-
dc.contributor.affiliatedAuthorLiyan Zhu-
dc.contributor.affiliatedAuthorFeng Ding-
dc.identifier.doi10.1039/c9nr04720d-
dc.identifier.bibliographicCitationNANOSCALE, v.11, no.30, pp.14339 - 14353-
dc.citation.titleNANOSCALE-
dc.citation.volume11-
dc.citation.number30-
dc.citation.startPage14339-
dc.citation.endPage14353-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusINTRINSIC STRENGTH-
dc.subject.keywordPlusTENSILE-STRENGTH-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusDEFECTS-
Appears in Collections:
Center for Multidimensional Carbon Materials(다차원 탄소재료 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
06 c9nr04720d.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse