Dynamical glass in weakly nonintegrable Klein-Gordon chains
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Carlo Danieli | - |
dc.contributor.author | Thudiyangal Mithun | - |
dc.contributor.author | Yagmur Kati | - |
dc.contributor.author | David K. Campbell | - |
dc.contributor.author | Sergej Flach | - |
dc.date.available | 2019-10-22T07:37:15Z | - |
dc.date.created | 2019-10-16 | - |
dc.date.issued | 2019-09 | - |
dc.identifier.issn | 2470-0045 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/6359 | - |
dc.description.abstract | Integrable many-body systems are characterized by a complete set of preserved actions. Close to an integrable limit, a nonintegrable perturbation creates a coupling network in action space which can be short or long ranged. We analyze the dynamics of observables which become the conserved actions in the integrable limit. We compute distributions of their finite time averages and obtain the ergodization time scale TE on which these distributions converge to δ distributions. We relate TE to the statistics of fluctuation times of the observables, which acquire fat-tailed distributions with standard deviations στ+ dominating the means μ+τ and establish that TE ∼ (στ+ )2 /μ+τ . The Lyapunov time T (the inverse of the largest Lyapunov exponent) is then compared to the above time scales. We use a simple Klein-Gordon chain to emulate long- and short-range coupling networks by tuning its energy density. For long-range coupling networks T ≈ στ+, which indicates that the Lyapunov time sets the ergodization time, with chaos quickly diffusing through the coupling network. For short-range coupling networksweobserveadynamicalglass,whereTE growsdramaticallybymanyordersofmagnitudeandgreatly exceeds the Lyapunov time, which satisfies T μ+τ . This effect arises from the formation of highly fragmented inhomogeneous distributions of chaotic groups of actions, separated by growing volumes of nonchaotic regions. These structures persist up to the ergodization time TE . ©2019 American Physical Society | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMERICAN PHYSICAL SOCIETY | - |
dc.title | Dynamical glass in weakly nonintegrable Klein-Gordon chains | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000487739700003 | - |
dc.identifier.scopusid | 2-s2.0-85072988232 | - |
dc.identifier.rimsid | 70249 | - |
dc.contributor.affiliatedAuthor | Carlo Danieli | - |
dc.contributor.affiliatedAuthor | Thudiyangal Mithun | - |
dc.contributor.affiliatedAuthor | Yagmur Kati | - |
dc.contributor.affiliatedAuthor | Sergej Flach | - |
dc.identifier.doi | 10.1103/PhysRevE.100.032217 | - |
dc.identifier.bibliographicCitation | PHYSICAL REVIEW E, v.100, no.3, pp.032217 | - |
dc.citation.title | PHYSICAL REVIEW E | - |
dc.citation.volume | 100 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 032217 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | DISCRETE BREATHERS | - |
dc.subject.keywordPlus | HAMILTONIAN-SYSTEMS | - |
dc.subject.keywordPlus | EQUILIBRIUM | - |
dc.subject.keywordPlus | SOLITONS | - |
dc.subject.keywordPlus | ENERGY | - |
dc.subject.keywordPlus | FERMI | - |
dc.subject.keywordPlus | PASTA | - |
dc.subject.keywordPlus | ULAM | - |
dc.subject.keywordPlus | DISTRIBUTIONS | - |
dc.subject.keywordPlus | BEHAVIOR | - |