BROWSE

Related Scientist

rodney,sruoff's photo.

rodney,sruoff
다차원탄소재료연구단
more info

ITEM VIEW & DOWNLOAD

Oxygen-Promoted Chemical Vapor Deposition of Graphene on Copper: A Combined Modeling and Experimental Study

DC Field Value Language
dc.contributor.authorBharathi Madurai Srinivasan-
dc.contributor.authorYufeng Hao-
dc.contributor.authorRamanarayan Hariharaputran-
dc.contributor.authorShanti Rywkin-
dc.contributor.authorJames C. Hone-
dc.contributor.authorLuigi Colombo-
dc.contributor.authorRodney S. Ruoff-
dc.contributor.authorYong-Wei Zhang-
dc.date.available2019-02-12T10:45:47Z-
dc.date.created2018-10-15-
dc.date.issued2018-09-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/5525-
dc.description.abstractMass production of large, high-quality single-crystalline graphene is dependent on a complex coupling of factors including substrate material, temperature, pressure, gas flow, and the concentration of carbon and hydrogen species. Recent studies have shown that the oxidation of the substrate surface such as Cu before the introduction of the C precursor, methane, results in a significant increase in the growth rate of graphene while the number of nuclei on the surface of the Cu substrate decreases. We report on a phase-field model, where we include the effects of oxygen on the number of nuclei, the energetics at the growth front, and the graphene island morphology on Cu. Our calculations reproduce the experimental observations, thus validating the proposed model. Finally, and more importantly, we present growth rate from our model as a function of O concentration and precursor flux to guide the efficient growth of large single-crystal graphene of high qualit © 2018 American Chemical Society-
dc.description.uri1-
dc.language영어-
dc.publisherAMER CHEMICAL SOC-
dc.subjectoxygen concentration-
dc.subjectgrowth rate-
dc.subjectnucleation density-
dc.subjectphase field model-
dc.subjectchemical vapor deposition-
dc.titleOxygen-Promoted Chemical Vapor Deposition of Graphene on Copper: A Combined Modeling and Experimental Study-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000445972400056-
dc.identifier.scopusid2-s2.0-85052882454-
dc.identifier.rimsid65740-
dc.contributor.affiliatedAuthorRodney S. Ruoff-
dc.identifier.doi10.1021/acsnano.8b04460-
dc.identifier.bibliographicCitationACS NANO, v.12, no.9, pp.9372 - 9380-
dc.citation.titleACS NANO-
dc.citation.volume12-
dc.citation.number9-
dc.citation.startPage9372-
dc.citation.endPage9380-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusSINGLE-CRYSTAL GRAPHENE-
dc.subject.keywordPlusBILAYER GRAPHENE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusFOILS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordPlusSUPPORT-
dc.subject.keywordPlusCU-
dc.subject.keywordAuthoroxygen concentration-
dc.subject.keywordAuthorgrowth rate-
dc.subject.keywordAuthornucleation density-
dc.subject.keywordAuthorphase field model-
dc.subject.keywordAuthorchemical vapor deposition-
Appears in Collections:
Center for Multidimensional Carbon Materials(다차원 탄소재료 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
2. acsnano.8b04460.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse