BROWSE

Related Scientist

douglas,leonard's photo.

douglas,leonard
지하실험연구단
more info

ITEM VIEW & DOWNLOAD

Deep neural networks for energy and position reconstruction in EXO-200

DC Field Value Language
dc.contributor.authorDelaquis, S-
dc.contributor.authorJewell, MJ-
dc.contributor.authorOstrovskiy, I-
dc.contributor.authorWeber, M-
dc.contributor.authorZiegler, T-
dc.contributor.authorDalmasson, J-
dc.contributor.authorKaufman, LJ-
dc.contributor.authorRichards, T-
dc.contributor.authorAlbert, JB-
dc.contributor.authorAnton, G-
dc.contributor.authorBadhrees, I-
dc.contributor.authorBarbeau, PS-
dc.contributor.authorBayerlein, R-
dc.contributor.authorBeck, D-
dc.contributor.authorBelov, V-
dc.contributor.authorBreidenbach, M-
dc.contributor.authorBrunner, T-
dc.contributor.authorCao, GF-
dc.contributor.authorCen, WR-
dc.contributor.authorChambers, C-
dc.contributor.authorCleveland, B-
dc.contributor.authorCoon, M-
dc.contributor.authorCraycraft, A-
dc.contributor.authorCree, W-
dc.contributor.authorDaniels, T-
dc.contributor.authorDanilov, M-
dc.contributor.authorDaugherty, SJ-
dc.contributor.authorDaughhetee, J-
dc.contributor.authorDavis, J-
dc.contributor.authorMesrobian-Kabakian, AD-
dc.contributor.authorDeVoe, R-
dc.contributor.authorDilling, J-
dc.contributor.authorDolgolenko, A-
dc.contributor.authorDolinski, MJ-
dc.contributor.authorFairbank, W-
dc.contributor.authorFarine, J-
dc.contributor.authorFeyzbakhsh, S-
dc.contributor.authorFierlinger, P-
dc.contributor.authorFudenberg, D-
dc.contributor.authorGornea, R-
dc.contributor.authorGratta, G-
dc.contributor.authorHall, C-
dc.contributor.authorHansen, EV-
dc.contributor.authorHarris, D-
dc.contributor.authorHoessl, J-
dc.contributor.authorHufschmidt, P-
dc.contributor.authorHughes, M-
dc.contributor.authorIverson, A-
dc.contributor.authorJamil, A-
dc.contributor.authorJohnson, A-
dc.contributor.authorKarelin, A-
dc.contributor.authorKoffas, T-
dc.contributor.authorKravitz, S-
dc.contributor.authorKrucken, R-
dc.contributor.authorKuchenkov, A-
dc.contributor.authorKumar, KS-
dc.contributor.authorLan, Y-
dc.contributor.authorDouglas S. Leonard-
dc.contributor.authorLi, GS-
dc.contributor.authorLi, S-
dc.contributor.authorLicciardi, C-
dc.contributor.authorLin, YH-
dc.contributor.authorMacLellan, R-
dc.contributor.authorMichel, T-
dc.contributor.authorMong, B-
dc.contributor.authorMoore, D-
dc.contributor.authorMurray, K-
dc.contributor.authorNjoya, O-
dc.contributor.authorOdian, A-
dc.contributor.authorPiepke, A-
dc.contributor.authorPocar, A-
dc.contributor.authorRetiere, F-
dc.contributor.authorRobinson, AL-
dc.contributor.authorRowson, PC-
dc.contributor.authorSchmidt, S-
dc.contributor.authorSchubert, A-
dc.contributor.authorSinclair, D-
dc.contributor.authorSoma, AK-
dc.contributor.authorStekhanov, V-
dc.contributor.authorTarka, M-
dc.contributor.authorTodd, J-
dc.contributor.authorTolba, T-
dc.contributor.authorVeeraraghavan, V-
dc.contributor.authorVuilleumier, JL-
dc.contributor.authorWagenpfeil, M-
dc.contributor.authorWaite, A-
dc.contributor.authorWatkins, J-
dc.contributor.authorWen, LJ-
dc.contributor.authorWichoski, U-
dc.contributor.authorWrede, G-
dc.contributor.authorXia, Q-
dc.contributor.authorYang, L-
dc.contributor.authorYen, YR-
dc.contributor.authorZeldovich, OY-
dc.date.available2019-01-03T05:33:18Z-
dc.date.created2018-10-15-
dc.date.issued2018-08-
dc.identifier.issn1748-0221-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/5222-
dc.description.abstractWe apply deep neural networks (DNN) to data from the EXO-200 experiment. In the studied cases, the DNN is able to reconstruct the relevant parameters - total energy and position - directly from raw digitized waveforms, with minimal exceptions. For the first time, the developed algorithms are evaluated on real detector calibration data. The accuracy of reconstruction either reaches or exceeds what was achieved by the conventional approaches developed by EXO-200 over the course of the experiment. Most existing DNN approaches to event reconstruction and classification in particle physics are trained on Monte Carlo simulated events. Such algorithms are inherently limited by the accuracy of the simulation. We describe a unique approach that, in an experiment such as EXO-200, allows to successfully perform certain reconstruction and analysis tasks by training the network on waveforms from experimental data, either reducing or eliminating the reliance on the Monte Carlo. (c) 2018 IOP Publishing Ltd and Sissa Medialab-
dc.description.uri1-
dc.language영어-
dc.publisherIOP PUBLISHING LTD-
dc.subjectAnalysis and statistical methods-
dc.subjectDouble-beta decay detectors-
dc.subjectPattern recognition-
dc.subjectcluster finding-
dc.subjectcalibration and fitting methods-
dc.subjectTime projection chambers-
dc.titleDeep neural networks for energy and position reconstruction in EXO-200-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000443201700003-
dc.identifier.scopusid2-s2.0-85053125001-
dc.identifier.rimsid65433-
dc.contributor.affiliatedAuthorDouglas S. Leonard-
dc.identifier.doi10.1088/1748-0221/13/08/P08023-
dc.identifier.bibliographicCitationJOURNAL OF INSTRUMENTATION, v.13, no.8, pp.p08023-
dc.citation.titleJOURNAL OF INSTRUMENTATION-
dc.citation.volume13-
dc.citation.number8-
dc.citation.startPagep08023-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorAnalysis and statistical methods-
dc.subject.keywordAuthorDouble-beta decay detectors-
dc.subject.keywordAuthorPattern recognition-
dc.subject.keywordAuthorcluster finding-
dc.subject.keywordAuthorcalibration and fitting methods-
dc.subject.keywordAuthorTime projection chambers-
Appears in Collections:
Center for Underground Physics(지하실험 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
pdf1.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse