Biosafe, Eco-Friendly Levan Polysaccharide toward Transient Electronics
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ki Yoon Kwon | - |
dc.contributor.author | Ju Seung Lee | - |
dc.contributor.author | Gwan-Jin Ko | - |
dc.contributor.author | Sung Hyuk Sunwoo | - |
dc.contributor.author | Sori Lee | - |
dc.contributor.author | Young Jin Jo | - |
dc.contributor.author | Chul Hee Choi | - |
dc.contributor.author | Suk-Won Hwang | - |
dc.contributor.author | Taeil Kim | - |
dc.date.available | 2019-01-03T05:33:08Z | - |
dc.date.created | 2018-08-17 | - |
dc.date.issued | 2018-08 | - |
dc.identifier.issn | 1613-6810 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/5213 | - |
dc.description.abstract | New options in the material context of transient electronics are essential to create or expand potential applications and to progress in the face of technological challenges. A soft, transparent, and cost-effective polymer of levan polysaccharide that is capable of complete, programmable dissolution is described when immersed in water and implanted in an animal model. The results include chemical analysis, the kinetics of hydrolysis, and adjustable dissolution rates of levan, and a simple theoretical model of reactive diffusion governed by temperature. In vivo experiments of the levan represent nontoxicity and biocompatibility without any adverse reactions. On-demand, selective control of dissolution behaviors with an animal model demonstrates an effective triggering strategy to program the system's lifetime, providing the possibility of potential applications in envisioned areas such as bioresorbable electronic implants and drug release systems.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | - |
dc.language | 영어 | - |
dc.publisher | WILEY-V C H VERLAG GMBH | - |
dc.subject | biocompatible | - |
dc.subject | biodegradable | - |
dc.subject | implantable electronics | - |
dc.subject | polysaccharide | - |
dc.subject | transient electronics | - |
dc.title | Biosafe, Eco-Friendly Levan Polysaccharide toward Transient Electronics | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000441134400012 | - |
dc.identifier.scopusid | 2-s2.0-85050859968 | - |
dc.identifier.rimsid | 64424 | - |
dc.contributor.affiliatedAuthor | Sung Hyuk Sunwoo | - |
dc.contributor.affiliatedAuthor | Taeil Kim | - |
dc.identifier.doi | 10.1002/smll.201801332 | - |
dc.identifier.bibliographicCitation | SMALL, v.14, no.32, pp.1801332 | - |
dc.relation.isPartOf | SMALL | - |
dc.citation.title | SMALL | - |
dc.citation.volume | 14 | - |
dc.citation.number | 32 | - |
dc.citation.startPage | 1801332 | - |
dc.embargo.liftdate | 9999-12-31 | - |
dc.embargo.terms | 9999-12-31 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | biocompatible | - |
dc.subject.keywordAuthor | biodegradable | - |
dc.subject.keywordAuthor | implantable electronics | - |
dc.subject.keywordAuthor | polysaccharide | - |
dc.subject.keywordAuthor | transient electronics | - |