BROWSE

ITEM VIEW & DOWNLOAD

Orthogonal bases of invariants in tensor models

DC Field Value Language
dc.contributor.authorPablo Diaz-
dc.contributor.authorSoo-Jong Rey-
dc.date.available2018-07-18T02:06:23Z-
dc.date.created2018-04-16-
dc.date.issued2018-02-
dc.identifier.issn1029-8479-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/4684-
dc.description.abstractRepresentation theory provides an efficient framework to count and classify invariants in tensor models of (gauge) symmetry Gd = U(N1) ⊗ · · · ⊗ U(Nd). We show that there are two natural ways of counting invariants, one for arbitrary Gd and another valid for large rank of Gd. We construct basis of invariant operators based on the counting, and compute correlators of their elements. The basis associated with finite rank of Gd diagonalizes two-point function. It is analogous to the restricted Schur basis used in matrix models. We comment on future directions for investigation. © 2018, The Author(s)-
dc.language영어-
dc.publisherSPRINGER-
dc.titleOrthogonal bases of invariants in tensor models-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000425382400003-
dc.identifier.scopusid2-s2.0-85042431523-
dc.identifier.rimsid63093-
dc.contributor.affiliatedAuthorSoo-Jong Rey-
dc.identifier.doi10.1007/JHEP02(2018)089-
dc.identifier.bibliographicCitationJOURNAL OF HIGH ENERGY PHYSICS, v.2018, no.2, pp.089-
dc.relation.isPartOfJOURNAL OF HIGH ENERGY PHYSICS-
dc.citation.titleJOURNAL OF HIGH ENERGY PHYSICS-
dc.citation.volume2018-
dc.citation.number2-
dc.citation.startPage089-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorGauge Symmetry-
dc.subject.keywordAuthorGauge-gravity correspondence-
dc.subject.keywordAuthorMatrix Models-
dc.subject.keywordAuthorModels of Quantum Gravity-
Appears in Collections:
HiddenCommunity > 1. Journal Papers (저널논문)
Files in This Item:
10.1007_JHEP02(2018)089.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse