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1 Introduction

There are various motivations that make a tensor model an interesting system to study.

One motivation comes from a scheme for studying quantum entanglement. From the

quantum mechanical point of view, rank d tensor models are associated with the multilinear

symmetry group Gd(N) = U(N1)⊗U(N2)⊗· · ·⊗U(Nd) acting on a tensor product Hilbert

space H = HN1 ⊗ · · · ⊗ HNd
. We know that the Hilbert space of a composed physical

system is the tensor product of its constituents, this is an essential aspect of entanglement in

quantum mechanics [1]. So tensor models naturally describe composite systems. Moreover,

gauge invariant operators built out of tensors separate the entangled and unentangled states

of H, so they can be viewed as a probe of quantum entanglement measurements [2].

Another motivation comes from a scheme for studying quantum gravity. Inspired

by the success of matrix models in describing two-dimensional quantum gravity [3], tensor

model was proposed as a framework for describing higher-dimensional random geometry [4–

6]. The colored tensor models [7, 8] and the development of its 1/N -expansion [9–11] trig-

gered a fast growth of the field of tensor model in recent years. The introduction of color

has served to overcome several difficulties that the earlier tensor models had in describing

quantum gravity at dimensions greater than two. More recently, the colored tensor model

have been found in direct connection with the AdS2/CFT1 holography, through an alter-

native formulation of the Sachdev-Ye-Kitaev (SYK) model [12–19] in which the necessity

of quenched disorder is dispensed [20], see also [21].

The simplest yet nontrivial tensor model is the matrix model, which was recently

studied extensively in the context of AdS/CFT correspondence. In the matrix model, the

use of orthogonal bases for two-point functions (first for the BPS-sector [22] and then for

general bosonic sectors [23–29] and involving gauge field [30] or fermions [31]) was extremely

useful for computations in N = 4 super Yang-Mills theory within the so-called non-planar
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regime, which involves heavy operators dual to excited D-branes and solitonic objects in

the string theory side [32–36].

The aim of this paper is to set an analogous framework for tensor models. We first count

tensor invariants, following the steps of [37] and [38]. We then construct bases of invariants

which diagonalize the two-point functions and we finally compute exact correlators of the

elements of the given basis. We argue that representation theory provides two natural

ways of counting gauge invariant tensor operators. One is valid for arbitrary rank of the

symmetry group Gd, while the other is only valid at large rank of it. In section 2, we

explore both methods of counting. Guided by them, in section 3, we construct bases of

gauge invariant operators and propose a basis for finite rank of symmetry group Gd that

diagonalizes the free two-point function of the tensor model. In section 4, we compute the

correlators of basis elements. Some directions for future study are discussed in section 5.

2 Two methods of counting invariants

Colored tensors are tensors with no further symmetry assumed. A d covariant color tensor

can be written as

Φ = Φi1i2...id ei1 ⊗ ei2 ⊗ · · · ⊗ eid , (2.1)

where {eik} form a basis of CNk , so ik = 1, . . . , Nk. The objects Φi1i2...id transform under

the action of Gd = U(N1)⊗U(N2)⊗ · · · ⊗U(Nd) as

Φj1j2...jd =
∑

i1,...,id

U(N1)
i1
j1
U(N2)

i2
j2
· · ·U(Nd)

id
jd
Φi1i2...id . (2.2)

The complex conjugate is a contravariant tensor that transforms as

Φ
j1j2...jd =

∑

i1,...,id

U(N1)
j1
i1
U(N2)

j2
i2
· · ·U(Nd)

jd
id
Φ
i1i2...id . (2.3)

We will be interested in the n-fold tensor product Φ⊗n, built out of n copies of eq. (2.1).

For these objects, we will use indices ipk where p = 1, . . . , n and k = 1, . . . , d. So, a basis of

Φ⊗n can be written as

n
⊗

p=1

d
⊗

k=1

ei
p
k where ipk = 1, . . . , Nk. (2.4)

Note that the group Gd acts diagonally (n times) on Φ⊗n. Now, as we want the copies to

be indistinguishable, we will take the average Sym(Φ)⊗n. For fixed n, consider operators

of the form

O = Sym(Φ)⊗n ⊗ Sym(Φ)⊗n, (2.5)

and select the set of these operators which are invariant under the action of Gd. They will

be referred to as OGd−inv.
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We first observe that invariants of tensors under the simultaneous unitary action (2.2)

and (2.3) are obtainable from contracting in all possible ways pairs of covariant and con-

travariant tensors. In other words, the set

{

Oα1...αd
=

n
∏

p=1

Φi
p
1i

p
2...i

p
d
Φ
i
α1(p)
1 i

α2(p)
2 ...i

αd(p)

d |α1, . . . αd ∈ Sn

}

(2.6)

spans the space of invariants. This is so because the space of U(Nk)-invariant linear maps

ι : ei ⊗ ej → δji (2.7)

is one-dimensional and, as we have n copies of both Φ and Φ, the map (2.7) can apply to

any of the permuted slots. Obviously, this holds for each tensor index, resulting in d per-

mutations of n elements for an n-fold product of a rank-d tensor, as shown in the set (2.6).

Note that, though every invariant can be expressed as a linear combination of the

elements of (2.6), the set (2.6) does not form a basis simply because the elements are not

linearly independent. The first problem is to find a way of counting the number of n-fold

invariants of rank d tensors. Applying arguments from representation theory, we will find

two natural ways of counting invariants, one that applies to arbitrary ranks Nk of the

constituent unitary groups and the other that holds for large ranks Nk, more specifically,

for Nk ≥ n for all k. This problem was independently addressed in [37] and [38]. We will

study them first and use the labels of these two ways of counting to construct the respective

bases of invariants.

2.1 Finite rank Nk

Call Vn and V n the vector spaces spanned by Sym(Φ)⊗n and Sym(Φ)⊗n, respectively.

The action of the group Gd on O is defined by its simultaneous diagonal action on both

Φ⊗n and Φ
⊗n

. This action will split Vn and V n, which are isomorphic each other, into

representations of Gd = U(N1)⊗ U(N2)⊗ · · · ⊗ U(Nd). Consider the index k out of the d

indices of Φ. In the n-fold product Φ⊗n, the space associated with this index is isomorphic

to (CNk)⊗n. Now, as a consequence of Schur-Weyl duality, irreducible representations of

(CNk)⊗n under the diagonal action of U(Nk) are labeled by Young diagrams with n boxes

with at most Nk rows. Thus, the irreducible representations of Vn (and of V n by the

isomorphism) under the action of Gd are labeled by collections (µ1, . . . , µd), where µk are

Young diagrams with n boxes, denoted as |µk| = n. The number of rows of each diagram

does not exceed Nk, that is, l(µk) ≤ Nk.

The problem of classifying OGd−inv, the Gd-invariants of Vn ⊗ V n, translates into a

representation theory problem since the invariants are in one-to-one correspondence with

Gd-invariant maps (Vn, V n) → C, that is,

dim{OGd−inv} = dim HomGd
(Vn, V n), (2.8)

and, by Schur’s Lemma, there exists one homomorphism (modulo an equivalence) every

time we pair up an irreducible representation (irrep) of Vn with an irrep of V n.
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Denote N = N1N2 · · ·Nd. It is clear that one can map ⊗d
i=1C

Ni → CN . This is called

the Kronecker map, and produces an embedding of the Kronecker product of matrices

⊗d
i=1U(Ni) into U(N). In turn, this maps

Vn → RN
(n), (2.9)

as RN
(n)

∼= Sym(CN )⊗n from the Schur-Weyl duality.1 The decomposition of a general irrep

RN
µ of U(N) under the Kronecker map just defined is known. For |µ| = n, one has

RN
µ =

⊕

|µ1|,...,|µd|=n
l(µk)≤Nk

gµ1,...µd,µR
N1
µ1

⊗ · · · ⊗RNd
µd

, (2.10)

where gµ1,...µd,µ are the Kronecker coefficients. For the case of interest, µ = (n). Now,

gµ1,...µd,(n) = gµ1,...µd
, as can be checked by the general formula

gµ1,...,µd
=

1

n!

∑

α∈Sn

χµ1(α) · · ·χµd
(α), µ1, . . . , µd ⊢ n, (2.11)

since χ(n)(α) = 1.

We thus found the decomposition

Vn
∼=

⊕

|µ1|,...,|µd|=n
l(µk)≤Nk

gµ1,...,µd
RN1

µ1
⊗ · · · ⊗RNd

µd
,

V n
∼=

⊕

|µ1|,...,|µd|=n
l(µk)≤Nk

gµ1,...,µd
R

N1

µ1
⊗ · · · ⊗R

Nd

µd
, (2.12)

where the representation Rµk
is isomorphic to the irrep Rµk

in the contravariant basis.

The Kronecker coefficients gµ1,...,µd
are thus the multiplicity of irrep (µ1, . . . , µd) in the

decomposition. Equivalently, gµ1,...,µd
is the number of orbits labeled by (µ1, . . . , µd) that

appear in Vn when acted on by Gd.

We now can apply the decomposition (2.12) into eq. (2.8) and obtain the formula

dim{OGd−inv} = dim HomGd
(Vn, V n) =

∑

|µ1|,...,|µd|=n
l(µk)≤Nk

g2(µ1, . . . , µd). (2.13)

This formula agrees with the result found in [37]. In the table (2.14), we illustrate this

result by enlisting the number of invariants for some values of n and N1 = N2 = N3 ≡ N ,

1The Schur-Weyl duality asserts that (CN )⊗n = ⊕λR
N
λ ⊗ Γλ under the action of U(N) and Sn, where

RN
λ and Γλ are irreps of U(N) and Sn, respectively. The operation “Sym” projects the direct sum into the

subspace labeled by λ = (n). As Γ(n) is one-dimensional, it follows that RN
(n)

∼= Sym(CN )⊗n.
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for the case d = 3.

N=1 N=2 N=3 N=4 N=5

n=1 1 1 1 1 1

n=2 1 4 4 4 4

n=3 1 5 11 11 11

n=4 1 12 31 43 43

n=5 1 15 92 143 161

(2.14)

2.2 Large rank Nk

If Nk were large enough, viz. Nk ≥ n for all k, there exists an alternative way of counting

invariants, based on the observation that all invariants is expressible as linear combinations

of elements in the set (2.6), subject to equivalence of a double diagonal action of Sn. This

is so because the initial ordering of the n slots in Φ⊗n and in Φ
⊗n

is irrelevant after

symmetrizing. So, the number of invariants coincides with the size of double coset

Diag(Sn)\S
×d
n /Diag(Sn). (2.15)

The size of double coset (2.15) can be calculated using Burnside’s Lemma [37, 38]. It

results in the simple formula

dim{OGd−Inv} = |Diag(Sn)\S
×d
n /Diag(Sn)| =

∑

λ⊢n

zd−2
λ , (2.16)

where zλ is combinatorial number that depends on the partition λ of n as follows. If we

write the partition λ = (λ1, . . . , λn) such that n =
∑

i iλi, then

zλ =

n
∏

i=1

iλi(λi!). (2.17)

The formula (2.16) is much simpler than the formula (2.13). Actually, computing eq. (2.13)

rapidly becomes out of reach as n grows, since there is no combinatorial method available

to date for computing Kronecker coefficients.

One can readily check that both formula agree each other. Evaluating eq. (2.16) for

d = 3 and n = 1, 2, 3, 4, 5, we get 1, 4, 11, 43, 161. We see that they match with the last

column of table (2.14). The general proof that both formulas coincide for large Nk can be

found in Proposition 5 of [37]. The idea is that, besides (2.10), Kronecker coefficients also

appear in the Kronecker product of irreps of Sn as2

Γµ1 ⊗ · · · ⊗ Γµd
=

⊕

µ

gµ1...µdµΓµ. (2.18)

using this fact, the size of the double coset (2.15) can be proven to be

|Diag(Sn)\S
×d
n /Diag(Sn)| =

∑

|µ1|,...,|µd|=n

g2µ1...µd
. (2.19)

2The proof that gµ1...µdµ in (2.10) are the same numbers as in (2.18) relies on Schur-Weyl duality.
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The difference between (2.19) and (2.13) is that in the counting (2.19) there is no restriction

in the number of columns of the irreps. This happens because (2.19) is derived from (2.18).

As a consequence, the formula derived from the double coset counts the number of invari-

ants only for large Nk, otherwise it overestimates it.

3 Bases of invariant operators

We next move to construct explicit bases of the invariants. The counting methods we

developed in the previous section will serve as a guidance for the construction. We will see

that, associated with the two “natural” counting methods, it is possible to construct two

types of bases.

Let us start with the case of finite Nk. The relevant formula is eq. (2.13). From this

formula we learn two things:

i) The first equality of eq. (2.13) tells us that there exists one invariant operator every

time we couple an irrep of Vn with its dual in V n. If we associate each irrep of

Vn with a vector, then invariants are in one-to-one correspondence with vectors for

the subspace of Vn where there is no multiplicity. In the subspaces for which a

certain irrep occurs more than once, invariants are in one-to-one correspondence

with endomorphisms. For example, if a certain irrep occurs twice, there are four

ways of pairing: {(v1, v1), (v1, v2), (v2, v1), (v2, v2)}.

ii) The second equality of eq. (2.13) tells us precise information about the decomposition

of Vn and the suitable labels to describe it. As can be read from of eq. (2.13), the set

of labels that exhausts the counting is {µ1, . . . , µd, ij}, where µk ⊢ n with l(µk) ≤ Nk,

and i, j = 1, . . . , gµ1...µd
.

As a basis of invariant operators for finite Nk, we propose

Oµ1...µd,ij = Tr
(

VnPµ1...µd,ijV n

)

, (3.1)

where Tr is an instruction to contract all the tensor indices of the elements of Vn with those

of V n such that the result is an invariant. Here, Pµ1...µd,ij is the projector that acts on the

vector space Vn and projects onto the subspace labeled by µ1 . . . µd (which has multiplicity

gµ1...µd
). As a basis of endomorphisms, we choose intertwiners labeled by i, j. So,3

Pµ1...µd,ijPµ′
1...µ

′
d
,i′j′ = δµ1µ

′
1
· · · δµdµ

′
d
δji′Pµ1...µd,ij

′

∑

µ1...µd

gµ1...µd
∑

i=1

Pµ1...µd,ii = 1. (3.2)

In view of the decomposition eq. (2.12), the operators (3.1) can be equivalently written as

Oµ1...µd,ij = Tr
(

Φµ1...µd,iΦµ1...µd,j

)

,

Oµ1...µd,ij = Tr
(

Φµ1...µd,jΦµ1...µd,i

)

, (3.3)

3Note the similarity of the basis so constructed with the restricted Schur basis built on matrix

models [23–25].
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where we have referred to Φµ1...µd,i and Φµ1...µd,j for the subspaces of Vn and V n corre-

sponding to copy i and copy j, respectively, of the irrep labeled by (µ1, . . . , µd).

Projectors on the labels µ1, . . . , µd can be constructed as follows. Start from the

standard projectors,

Pµ =
dµ
n!

∑

σ∈Sn

χµ(σ)σ, (3.4)

which projects the tensor product (CN )⊗n onto the subspace RN
µ ⊗ Γµ of the Schur-Weyl

decomposition. Applying the standard projector (3.4) on each index of Φ⊗n, we then define

the projectors

Pµ1...µd
≡

dµ1 · · · dµd

n!d

∑

σ1,...,σd∈Sn

χµ1(σ1) · · ·χµd
(σd)σ1 · · ·σd, (3.5)

where each permutation acts on a different index of Φ. These projectors are then related

to the projector Pµ1...µd,ij in eqs. (3.1), (3.2) as

Pµ1...µd
=

gµ1...µd
∑

i=1

Pµ1...µd,ii, (3.6)

that is, Pµ1...µd
projects on the isotypical component. Associated with projectors (3.5), we

construct the invariant operators

Oµ1...µd
=

dµ1 · · · dµd

n!d

∑

α1,...,αd∈Sn

χµ1(α1) · · ·χµd
(αd)Oα1...αd

, (3.7)

where Oα1...αd
’s are as in eq. (2.6). In general, operators Oµ1...µd

do not form a basis, except

for special cases like d = 3 and n = 1, 2, 3, 4, where there are no multiplicities and so they

coincide with Oµ1...µd,ij . However, we have an explicit construction of them and, as we

will shown below, we find that they form an orthogonal set of the two-point function. An

explicit construction of Oµ1...µd,ij in terms of permutations must exist since, as discussed

before, the set (2.6) spans the space of invariants operators. We leave it for a future work.

Alternative bases of invariant operators can be constructed in the case that n ≤ Nk for

all k. In the spirit of the double coset counting, two invariant operators Oα1...αd
and Oβ1...βd

are linearly independent if and only if it does not exist τ, σ ∈ Sn such that ταiσ = βi for

all i.4 Now, for every monomial Oα1...αd
, we can choose a representative multiplying all

the permutations by α−1
d . So, after reordering, we are left with a collection of operators

{Oβ1...βd−11|β1, . . . , βd−1 ∈ Sn}. (3.8)

These operators still have the equivalence

Oβ1...βd−11 ∼ Oτβ1τ−1...τβd−1τ
−11, (3.9)

4Note that this condition does not guarantee linear independence if n > Nk for any k.
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otherwise, they are linearly independent. Now we choose representatives of the orbits

of (β1, . . . βd−1) generated by simultaneous conjugation. Each representative will be a

collection (σ1, . . . , σd−1). Then, the set

{Oσ1...σd−11|(σ1, . . . , σd−1) representative} (3.10)

forms a basis.

On general grounds, we do not expect that the basis (3.10) is orthogonal under the two-

point function. So, it will only have a limited utility for computations. A clear advantage

of providing an orthogonal basis with easy expressions for the correlators is that it serves

to compute correlators of generic observables, as they can always decompose into linear

combinations of the elements of the basis. Thus, it will be desirable to build an orthogonal

basis for the large Nk case. Here, we sketch how to do so, leaving detailed study to our

forthcoming work [39]. The idea is to focus on the counting (2.16). We see that the number

of invariants is counted as a sum of partitions λ and the value of zλ. The key observation

is that zλ counts the number of permutations that commute with a given permutation x,

which has cycle structure λ. In other words, given x with [x] = λ, zλ is the number of

solutions of the equation

σxσ−1 = x, σ ∈ Sn. (3.11)

For instance, if x is the identity, then there are n! solutions since every permutation would

solve the equation. Solutions of eq. (3.11) form a subgroup Hx ⊂ Sn. The structure of Hx

can be read off from the diagram λ in this way: if we write the partition λ = (λ1, . . . , λn)

so that n =
∑

i iλi, then

Hx = ×n
i=1 Sλi

≀ Ci, [x] = λ, (3.12)

where Sλi
≀Ci is the wreath product of Sλi

with the cyclic group of size i. The idea is to use

the subgroup Hx to form an orthogonal basis. For more details and explicit constructions,

see [39].

4 Correlators

Consider a free tensor model, defined by the partition function,

Z =

∫

dΦdΦe−Φ·Φ. (4.1)

Here, in the probability distribution function, the quadratic term ΦΦ is chosen to be the

simplest

Φ · Φ = Φi1...idΦ
i1...id , (4.2)

with repeated indices contracted. The two-point correlator of this model reads

〈Φi1...idΦ
j1...jd〉 =

1

Z

∫

dΦdΦ Φi1...idΦ
j1...jde−ΦΦ = δj1i1 · · · δ

jd
id
. (4.3)

If we have n copies of Φ and Φ, then we get a sum over Wick contractions

〈
n
∏

p=1

Φi
p
1...i

p
d

n
∏

q=1

Φ
j
q
1 ...j

q
d〉 =

∑

σ∈Sn

n
∏

p=1

δ
j
σ(p)
1

i
p
1

· · · δ
j
σ(p)
d

i
p
d

. (4.4)
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The invariant operators we are considering here have the schematic structure O = Φ⊗n ⊗

Φ
⊗n

. When computing correlators of the form 〈OO
′
〉 we will consider each operator normal

ordered, so that we will only allow contractions between Φ’s of O and Φ’s of O
′
and between

Φ’s of O and Φ’s of O
′
. For this reason, the sum in the correlator 〈OO

′
〉 will be the sum

over Wick contractions determined by the two permutations σ, τ ∈ Sn.

For invariant operators of the form (2.6), we have

〈Oα1...αd
Oβ1...βd

〉 =
∑

σ,τ∈Sn

N
C(σα1τβ

−1
1 )

1 N
C(σα2τβ

−1
2 )

2 · · ·N
C(σαdτβ

−1
d

)

d , (4.5)

where C(σ) is the number of disjoint cycles of permutation σ. We will use eq. (4.5) to

compute the correlators of the bases we proposed in the previous section. For explicit

computations, we will need the identity

N
C(τ)
k =

1

n!

∑

λ⊢n

dλχλ(τ)fλ(Nk), (4.6)

which should be read as an explicit expansion of the function N
C(τ)
k (which is a class

function since it depends only on the cycle structure of τ) in terms of characters of the

symmetric group which form a basis of class functions.5 The combinatorial function fλ(Nk)

is readily constructed from the corresponding Young diagram λ as

fλ(Nk) =
∏

i,j

(Nk − i+ j), (4.7)

where i, j are coordinates of the Young diagram λ starting from the top left. So, i is the

row number and j is the column number. Using eq. (4.6), we may write the correlators in

terms of the characters of the symmetric group and functions fλ(Nk) as
6

〈Oα1...αd
Oβ1...βd

〉 =
1

n!d

∑

σ,τ∈Sn

µ1,...,µd⊢n

d
∏

k=1

dµk
χµk

(σαkτβ
−1
k )fµi

(Nk). (4.8)

Now, let us first consider the bases we have proposed at large Nk. We will have

〈Oσ1...σd−1
Oσ1...σd−1

〉 =
∑

σ,τ∈Sn

N
C(σσ1τσ

−1
1 )

1 · · ·N
C(σσd−1τσ

−1
d−1)

d−1 N
C(στ)
d , (4.9)

where (σ1, . . . σd−1) and (σ1, . . . σd−1) are representatives of the orbits produced by simul-

taneous conjugation of the d− 1 permutations. As anticipated in the previous section, the

elements of this basis are not orthogonal under the free two-point function. Since eq. (4.9)

admits little simplification, there is not much useful information in these correlators.

5The formula (4.6) can be derived from the relation between characters of the symmetric group and

Schur functions [40].
6The recent work [41] also derived an equivalent expression for the correlators.
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More interesting are the correlators of operators defined in eq. (3.7). For those opera-

tors, we have

〈Oµ1...µd
Oν1...νd〉 =

1

n!2d

∑

α1,...,αd∈Sn

β1,...,βd∈Sn

d
∏

k=1

dµk
dνkχµk

(αk)χνk(βk)〈Oα1...αd
Oβ1...βd

〉 . (4.10)

Let us substitute eq. (4.8) into eq. (4.10). Using the orthogonality relation for characters

1

n!

∑

σ∈Sn

χµk
(σ)χνk(σ

−1τ) = δµkνk

1

dµk

χµk
(τ) (4.11)

for every k = 1, . . . , d in eq. (4.10), we get

〈Oµ1...µd
Oν1...νd〉 =

1

n!d

d
∏

k=1

δµkνkdµk
fµk

(Nk)
∑

στ∈Sn

χµk
(στ)

= gµ1...µd

1

n!d−2

d
∏

k=1

δµkνkdµk
fµk

(Nk)

= (n!)2gµ1...µd

d
∏

k=1

δµkνkDimNk
(µk), (4.12)

where DimN (µ) is the dimension of the irrep µ of U(N). In these steps, we used eq. (2.11)

and the fact that

DimN (µ) =
dµfµ(N)

n!
. (4.13)

The two-point correlators of the model seems to be perfectly adapted to the classification of

the invariants in terms of irreps of Vn, in the sense that these invariants are orthogonal un-

der the correlators. These has been proven in eq. (4.12) at least for the subspaces labeled by

(µ1, . . . , µd). It still needs to be proven that the basis operators Oµ1...µd,ij are also orthogo-

nal on the labels i, j. Now, since Oµ1...µd
=

∑

iOµ1...µd,ii, the result eq. (4.12) suggests that

〈Oµ1...µd,ijOν1...νd,kl〉 = n!2δikδjl

d
∏

k=1

δµkνkDimNk
(µk). (4.14)

A formal proof of eq. (4.14) will be relegated in our forthcoming companion work [39].

Here, we content ourselves with a brief explanation of the idea why eq. (4.14) is expected

to hold. We have seen that, because of normal ordering, when we compute correlators

〈OO〉, the Wick contractions work independently between the covariant part of O and the

contravariant part of O and between the contravariant part of O and the covariant part of

O. Writing O and O as in eq. (3.3), we have

〈Oµ1...µd,ijOν1...νd,kl〉 = 〈Tr
(

Φµ1...µd,iΦµ1...µd,j

)

Tr
(

Φν1...νd,lΦν1...νd,k

)

〉. (4.15)

Orthogonality on the labels µ1, . . . , µd follows immediately since the two-point correlator

is a G-invariant function and the only possible homomorphism between different irreps is
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null. Now, the independence of the Wick contractions due to normal ordering and eq. (4.12)

tells us that eq. (4.14) will hold if

〈Φµ1...µd,iΦµ1...µd,j〉 ∼ δij , (4.16)

that is, if the two-point correlator is also orthogonal for different copies of the isotypical

space. So, proving eq. (4.16) would automatically prove eq. (4.14). The proof of eq. (4.16)

will reflect the role of Wick contractions as special G-invariant functions. Notice that, in

an analogous setup for matrix models (i.e. the restricted Schur basis), the two-point corre-

lator also diagonalizes the operators associated with different components of the isotypical

space [23–25].

5 Summary and future work

In this work, we used arguments from representation theory to count tensor invariants and

to construct bases of them based on the countings. We found two different bases, one valid

for arbitrary values of the ranks of symmetry group and a second that counts the number of

invariants for large ranks. We computed the correlators of the elements in both bases. The

basis associated with the counting at finite rank is analogous to the restricted Schur basis

used in matrix models, and it is orthogonal under the two-point correlators of the theory.

Regarding the two countings and the bases, there are two possible extensions of this

work. First, it would be interesting to construct an orthogonal basis for large rank of the

symmetry group, based on the counting eq. (2.16) and perhaps using the arguments given

below eq. (3.11). Then, we should be able to compare both orthogonal bases, for finite and

large ranks, and compute their correlators. Second, it would be useful to establish a rigorous

proof of eq. (4.14) and, if possible, an explicit construction in terms of permutations of the

invariants eq. (3.1). All these progresses will be relegated to our forthcoming work [39].

The tensor model we study here is bosonic. If we consider a fermionic tensor model,

then we would make contact with the SYK alternative model proposed in [20]. To build a

fermionic basis for finite rank, we would start with eq. (3.1) and proceed in an analogous

way as was done in [31] in the context of matrix models. Then, we would be able to perform

exact computations for heavy states in the model and compare them with their AdS2 bulk

counterparts.7
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