Carbon-Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hyun-Tak Kim | - |
dc.contributor.author | HyeonOh Shin | - |
dc.contributor.author | In-Yup Jeon | - |
dc.contributor.author | Masood Yousaf | - |
dc.contributor.author | Jaeyoon Baik | - |
dc.contributor.author | Hae-Won Cheong | - |
dc.contributor.author | Noejung Park | - |
dc.contributor.author | Jong-Beom Baek | - |
dc.contributor.author | Tae-Hyuk Kwon | - |
dc.date.available | 2018-03-05T01:04:01Z | - |
dc.date.created | 2018-01-23 | - |
dc.date.issued | 2017-12 | - |
dc.identifier.issn | 0935-9648 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/4400 | - |
dc.description.abstract | The direct formation of C-N and C-O bonds from inert gases is essential for chemical/biological processes and energy storage systems. However, its application to carbon nanomaterials for improved energy storage remains technologically challenging. A simple and very fast method to form C-N and C-O bonds in reduced graphene oxide (RGO) and carbon nanotubes (CNTs) by an ultrasonic chemical reaction is described. Electrodes of nitrogen- or oxygen-doped RGO (N-RGO or O-RGO, respectively) are fabricated via the fixation between N-2 or O-2 carrier gas molecules and ultrasonically activated RGO. The materials exhibit much higher capacitance after doping (133, 284, and 74 F g(-1) for O-RGO, N-RGO, and RGO, respectively). Furthermore, the doped 2D RGO and 1D CNT materials are prepared by layer-by-layer deposition using ultrasonic spray to form 3D porous electrodes. These electrodes demonstrate very high specific capacitances (62.8 mF cm(-2) and 621 F g(-1) at 10 mV s(-1) for N-RGO/N-CNT at 1:1, v/v), high cycling stability, and structural flexibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | WILEY-V C H VERLAG GMBH | - |
dc.subject | carbon-heteroatom bonds | - |
dc.subject | carbon nanomaterials | - |
dc.subject | energy storage systems | - |
dc.subject | ultrasonic chemistry | - |
dc.title | Carbon-Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000418068700004 | - |
dc.identifier.scopusid | 2-s2.0-85033457770 | - |
dc.identifier.rimsid | 61967 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Masood Yousaf | - |
dc.identifier.doi | 10.1002/adma.201702747 | - |
dc.identifier.bibliographicCitation | ADVANCED MATERIALS, v.29, no.47, pp.1702747 | - |
dc.citation.title | ADVANCED MATERIALS | - |
dc.citation.volume | 29 | - |
dc.citation.number | 47 | - |
dc.citation.startPage | 1702747 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.scptc | 0 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | NITROGEN-DOPED GRAPHENE | - |
dc.subject.keywordPlus | OXYGEN REDUCTION REACTION | - |
dc.subject.keywordPlus | ELECTROCHEMICAL CAPACITORS | - |
dc.subject.keywordPlus | FUNCTIONALIZED GRAPHENE | - |
dc.subject.keywordPlus | HIGH-PERFORMANCE | - |
dc.subject.keywordPlus | SUPERCAPACITORS | - |
dc.subject.keywordPlus | ELECTRODES | - |
dc.subject.keywordPlus | FIXATION | - |
dc.subject.keywordPlus | OXIDE | - |
dc.subject.keywordPlus | ELECTROCATALYSTS | - |
dc.subject.keywordAuthor | carbon-heteroatom bonds | - |
dc.subject.keywordAuthor | carbon nanomaterials | - |
dc.subject.keywordAuthor | energy storage systems | - |
dc.subject.keywordAuthor | ultrasonic chemistry | - |